Доступ в Интернет

Криптографические ключи. Открытый и закрытый ключ шифрования Открытый и закрытый ключ в ассиметричном шифровании

Основной целью применения SSL сертификатов является шифрование данных, передаваемых на сервер от клиента и клиенту от сервера. Для обеспечения безопасности такого соединения современные браузеры используют алгоритм TLS, основанный на сертификатах формата X.509. Данный алгоритм применяет ассиметричное шифрование, чтобы создать ключ сессии для симмертичного шифрования. Последнее используется непосредственно для передачи данных после установления защищенного соединения.

Что такое ключ в криптографии?

Ключ в криптографии представляет собой секретную информацию, которая применяется в криптографии для шифрования и декодирования сообщений, для простановки цифровой подписи и ее проверки, для вычисления кодов аутентичности сообщений и прочее. Насколько ключ надежен определяется так называемой длиной ключа, которая измеряется в битах. Стандартной длиной ключа для SSL сертификатов считается 128 или 256 бит. Длина ключа сертификата корневого центра сертификации (root certificate) не должна быть ниже 4096 бит. Все центры сертификации, с которыми мы сотрудничаем, предоставляют SSL сертификаты с ключом, полностью соответствующим современным стандартам:

Открытый и закрытый ключ в ассиметричном шифровании

В ассиметричном шифровании применяется пара ключей : открытый (Public key) и закрытый , также называемый секретным (Private key ). Открытый и закрытый ключи в данном случае позволяют криптографическому алгоритму шифровать и дешифровать сообщение. При этом сообщения, зашифрованные открытым ключом, расшифровать можно только с помощью закрытого ключа. Открытый ключ публикуется в сертификате владельца и доступен подключившемуся клиенту, а закрытый – хранится у владельца сертификата. Открытый и закрытый ключ между собой связаны математическими зависимостями, поэтому подобрать открытый или закрытый ключ невозможно за короткое время (срок действия сертификата). Именно поэтому максимальный срок действия SSL сертификатов более высого уровня защиты всегда ниже. Так, можно заказать максимум на 2 года. При этом заказывая новый SSL сертификат или продлевая старый, важно генерировать новый CSR запрос, так как к нему привязывается Ваш закрытый ключ и при выпуске нового SSL сертификата лучше его обновлять. Взаимодействие клиента с сервером происходит следующим образом:
  1. браузер на основе открытого ключа шифрует запрос и отправляет его на сервер;
  2. сервер, применяя закрытый ключ, расшифровывает полученное сообщение;
  3. сервер шифрует закрытым ключом свой цифровой идентификатор и передает его клиенту;
  4. клиент сверяет идентификатор сервера и передает свой;
  5. после взаимной аутентификации клиент шифрует открытым ключом ключ будущей сессии и передает его на сервер;
  6. все последующие сообщения, которые передаются между клиентом и сервером, подписываются ключом сессии и шифруются с использованием открытого и закрытого ключа.
Таким образом обеспечиваются несколько пунктов безопасности:
  • исключается возможность утечки информации – при перехвате её нельзя будет расшифровать;
  • сервер подтверждает свой адрес и идентификатор, отсекается возможность перенаправления на другой сайт (фишинг);
  • клиенту присваивается индивидуальная сессия, что позволяет отличать его от других клиентов более надежно;
  • после установки защищенной сессии все сообщения шифруются с использованием идентификатора клиента, и не могут быть незаметно перехвачены или изменены.

В общем случае шифрование открытым и закрытым ключом можно рассматривать как кейс, для которого используются два ключа: одним можно только закрыть, другим – открыть. Если кейс закрыли первым ключом, открыть его может только второй, если закрыли вторым, чтобы открыть – потребуется первый. Наглядно это можно увидеть на схеме выше.

В качестве секретной информации используются криптографические ключи.

Криптографический ключ представляет собой последовательность символов, выработанную по определенным правилам. Эта последовательность используется при криптографических преобразованиях текстов. Для каждого криптографического алгоритма существуют свои требования, в соответствии с которыми создаются ключи. Каждый ключ создается для определенного алгоритма.

Для того чтобы обеспечить невоспроизводимость электронной подписи и невозможность прочтения зашифрованных текстов посторонними людьми, в криптографии применяются криптографические ключи.

Современный криптографический ключ - это последовательность чисел определенной длины, созданная по определенным правилам на основе последовательности случайных чисел. Для каждого ключа последовательность случайных чисел создается заново, ни одна последовательность не используется более одного раза. Для генерации последовательностей случайных чисел используются специальные программные объекты или устройства, называемые датчиками случайных чисел.

Каждый алгоритм предъявляет собственные требования к ключам, поэтому любой криптографический ключ создается для определенного алгоритма и используется только с этим алгоритмом.

Если выработка электронной подписи и ее проверка, или зашифрование и расшифрование текста выполняются с помощью одного и того же ключа, такой подход называется симметричной криптографией (соответственно симметричные алгоритмы и симметричные ключи). Операции симметричной криптографии выполняются быстро и сравнительно просты. Но они требуют знания ключа по меньшей мере двумя людьми, что значительно повышает риск их компрометации (т.е. доступа к ним посторонних лиц).

Поэтому сейчас в основном используется асимметричная криптография . В асимметричной криптографии выработка электронной подписи или зашифрование выполняются на одном ключе, а проверка подписи или расшифрование - на другом, парном ключе.



В асимметричной криптографии применяются так называемые ключевые пары (key pairs). Каждая такая пара состоит из двух связанных между собой ключей. Один из этих ключей - закрытый (private key). Он известен только владельцу ключа и ни при каких условиях не должен быть доступен никому другому. Другой ключ - открытый (public key), он может быть доступен

любому желающему.

Методы аутентификации

Аутентификация - выдача определённых прав доступа абоненту на основе имеющегося у него идентификатора. IEEE 802.11 предусматривает два метода аутентификации:

1. Открытая аутентификация (англ. Open Authentication ):

Рабочая станция делает запрос аутентификации, в котором присутствует только MAC-адрес клиента. Точка доступа отвечает либо отказом, либо подтверждением аутентификации. Решение принимается на основе MAC-фильтрации, т.е. по сути это защита на основе ограничения доступа, что не безопасно.

2. Аутентификация с общим ключом (англ. Shared Key Authentication ):

Необходимо настроить статический ключ шифрования алгоритма WEP (англ. Wired Equivalent Privacy ). Клиент делает запрос у точки доступа на аутентификацию, на что получает подтверждение, которое содержит 128 байт случайной информации. Станция шифрует полученные данные алгоритмом WEP (проводится побитовое сложение по модулю 2 данных сообщения с последовательностью ключа) и отправляет зашифрованный текст вместе с запросом на ассоциацию. Точка доступа расшифровывает текст и сравнивает с исходными данными. В случае совпадения отсылается подтверждение ассоциации, и клиент считается подключенным к сети.
Схема аутентификации с общим ключом уязвима к атакам «Man in the middle». Алгоритм шифрования WEP – это простой XOR ключевой последовательности с полезной информацией, следовательно, прослушав трафик между станцией и точкой доступа, можно восстановить часть ключа.
IEEE начал разработки нового стандарта IEEE 802.11i, но из-за трудностей утверждения, организация WECA (англ. Wi-Fi Alliance ) совместно с IEEE анонсировали стандарт WPA (англ. Wi-Fi Protected Access ). В WPA используется TKIP (англ.Temporal Key Integrity Protocol , протокол проверки целостности ключа), который использует усовершенствованный способ управления ключами и покадровое изменение ключа.

WPA также использует два способа аутентификации:

1. Аутентификация с помощью предустановленного ключа WPA-PSK (англ. Pre-Shared Key ) (Enterprise Autentification);

2. Аутентификация с помощью RADIUS-сервера (англ. Remote Access Dial-in User Service )

Виды шифрования

Шифрова́ние - способ преобразования открытой информации в закрытую и обратно. Применяется для хранения важной информации в ненадёжных источниках или передачи её по незащищённым каналам связи. Шифрование подразделяется на процесс зашифровывания и расшифровывания.

В зависимости от алгоритма преобразования данных, методы шифрования подразделяются на гарантированной или временнойкриптостойкости.

В зависимости от структуры используемых ключей методы шифрования подразделяются на

§ симметричное шифрование: посторонним лицам может быть известен алгоритм шифрования, но неизвестна небольшая порция секретной информации - ключа, одинакового для отправителя и получателя сообщения;

§ асимметричное шифрование: посторонним лицам может быть известен алгоритм шифрования, и, возможно, открытый ключ, но неизвестен закрытый ключ, известный только получателю.

Существуют следующие криптографические примитивы:

§ Бесключевые

1. Хеш-функции

2. Односторонние перестановки

3. Генераторы псевдослучайных чисел

§ Симметричные схемы

1. Шифры (блочные,потоковые)

2. Хеш-функции

4. Генераторы псевдослучайных чисел

5. Примитивы идентификации

§ Асимметричные схемы

3. Примитивы идентификации

Шифрование данных на диске
Система Zserver - средство защиты конфиденциальной информации, хранимой и обрабатываемой на корпоративных серверах, методом шифрования данных на диске. Zserver работает по принципу «прозрачного» шифрования разделов жестких дисков. Система автоматически, в online режиме, осуществляет шифрование информации при записи на диск и расшифровывает при чтении с него. Это обеспечивает хранение данных на диске в зашифрованном виде и невозможность использования их без ключа шифрования даже при изъятии сервера или носителя. Система Zserver обеспечивает шифрование файлов и папок на диске, а также всей служебной информации - таблицы размещения файлов и т. д. Таким образом, система Zserver не только надежно защищает конфиденциальные данные, но и скрывает сам факт их наличия от посторонних. Информация на защищенных дисках хранится в зашифрованном виде и становится доступна, только когда администратор сети предоставит пользователю соответствующие полномочия. Права доступа к защищенным дискам устанавливаются средствами операционной системы. Шифрование файлов и папок на диске осуществляется программным драйвером. Ключи шифрования данных на диске вводятся при загрузке сервера со смарт-карты, защищенной PIN-кодом. Не зная PIN-кода, воспользоваться смарт-картой нельзя. Три попытки неправильного ввода PIN-кода заблокируют карту. Смарт-карта необходима только при подключении защищенных носителей, и в процессе работы не требуется. При перезагрузке сервера без смарт-карты, защищенные диски не будут доступны. Система Zserver предоставляет возможность удаленного ввода ключей шифрования и администрирования системы с любой рабочей станции локальной сети, или через Интернет. В настоящее время разработаны системы Zserver, которые работают под управлением следующих операционных систем: Windows 2000/XP/2003/2008 (32- и 64-разрядные); Linux с ядром 2.6.x.

Данные в этом случае рассматриваются как сообщения, и для защиты их смысла используется классическая техника шифрования .

Криптография предполагает наличие трех компонентов: данных, ключа и криптографического преобразования. При шифровании исходными данными будет сообщение, а результирующими - шифровка. При расшифрований они меняются местами. Считается, что криптографическое преобразование известно всем, но, не зная ключа, с помощью которого пользователь закрыл смысл сообщения от любопытных глаз, требуется потратить невообразимо много усилий на восстановление текста сообщения. (Следует еще раз повторить, что нет абсолютно устойчивого от вскрытия шифрования. Качество шифра определяется лишь деньгами, которые нужно выложить за его вскрытие от $10 и до $1000000.) Такое требование удовлетворяется рядом современных криптографических систем, например, созданных по "Стандарту шифрования данных Национального бюро стандартов США" DES и ГОСТ 28147-89. Так как ряд данных критичен к некоторым их искажениям, которые нельзя обнаружить из контекста, то обычно используются лишь такие способы шифрования, которые чувствительны к искажению любого символа. Они гарантируют не только высокую секретность, но и эффективное обнаружение любых искажений или ошибок.

Параметры алгоритмов

Существует множество (не менее двух десятков) алгоритмов симметричных шифров, существенными параметрами которых являются:

§ стойкость

§ длина ключа

§ число раундов

§ длина обрабатываемого блока

§ сложность аппаратной/программной реализации

§ сложность преобразования

[Распространенные алгоритмы

§ AES (англ. Advanced Encryption Standard ) - американский стандарт шифрования

§ ГОСТ 28147-89 - отечественный стандарт шифрования данных

§ DES (англ. Data Encryption Standard ) - стандарт шифрования данных в США до AES

§ 3DES (Triple-DES, тройной DES)

§ RC6 (Шифр Ривеста)

§ IDEA (англ. International Data Encryption Algorithm )

§ SEED - корейский стандарт шифрования данных

Ключ шифрования – это тайная информация (набор цифр и букв), которая используется алгоритмом для шифрования и расшифровки информации.

Надёжность ключа зависит от его длины в битах. В технологии SSL используют шифры 4096 бит для корневого сертификата и 128–256 бит для клиентских. Такая длина достаточна для безопасной передачи данных.

Протокол SSL использует асимметричное шифрование или шифрование с открытым ключом для установки соединения. Несмотря на название, здесь используются 2 ключа: открытый и закрытый. Оба формируются при запросе SSL-сертификата.

Открытый (публичный ключ) доступен всем. Используется для шифрования данных при обращении браузера к серверу.

Закрытый (секретный ключ) известен только владельцу сайта. Используется для расшифровки данных, отправленных браузером.

Шифрование с двумя ключами разного типа гарантирует сохранность информации. Даже если мошенник перехватит трафик, не сможет расшифровать его без закрытого ключа.

Однако асимметричный алгоритм ресурсоемок, а скорость шифрования на 2-3 порядка ниже симметричного алгоритма. Поэтому в SSL-технологии шифрование с открытым ключом используется только для согласования секретного симметричного ключа . С его помощью устанавливается защищённое HTTPS-соединение – данные передаются быстро и безопасно.

Сразу использовать симметричное шифрование ненадежно. В этом алгоритме один и тот же ключ шифрует и расшифровывает информацию. Посетитель сайта и владелец сервера должны договориться о нем без свидетелей.

Передать по почте, телефону или смской не получится – перехватят или подслушают.

Значит, нужно отправить симметричный ключ в зашифрованном сообщении . Но сначала убедиться, что его получит правильный адресат.

  1. Чтобы аутентифицировать сервер, браузер посетителя проверяет, подписан ли SSL-сертификат сертификатом доверенного центра.
  2. Чтобы договориться о симметричном ключе шифрования сервер и браузер используют асимметричное шифрование с открытым ключом.

Рассмотрим этот процесс на примере реальных ключей:

Боб отправляет Алисе замок, ключ от которого есть только у него.

Замок здесь – публичный ключ.

Алиса закрывает замком Боба ящик с секретом и посылает обратно.

Так же браузер шифрует сообщение с помощью публичного ключа и передаёт на сервер.

Открыть ящик не сможет никто: ни сама Алиса, ни сотрудники почты.

Мошенник точно так же не может расшифровать сообщение браузера без закрытого ключа.

Боб получает ящик, открывает своим единственным ключом и узнаёт секрет.

Сервер расшифровывает сообщение закрытым ключом, который есть только у него.

Как Алиса и Боб ведут тайную переписку, так браузер и сервер устанавливают защищённое HTTPS-соединение и обмениваются данными.

Многие современные алгоритмы шифрования с открытым ключом основаны на однонаправленности функции разложения на множители числа, являющегося произведением двух больших простых чисел. Эти алгоритмы также могут быть подвергнуты атаке, подобной методу тотального перебора, применяемому против шифров с секретным ключом, с одним лишь отличием: опробовать каждый ключ не потребуется, достаточно суметь разложить на множители большое число.

Конечно, разложение большого числа на множители - задача трудная. Однако сразу возникает резонный вопрос, насколько трудная. К несчастью для криптографов, сложность ее решения уменьшается. И что еще хуже, эта сложность падает значительно более быстрыми темпами, чем ожидалось ранее. Например, в середине 70-х годов считалось, что для разложения на множители числа из 125 цифр потребуются десятки квадрильонов лет. А всего два десятилетия спустя с помощью компьютеров, подключенных к сети Internet, удалось разложить на множители число из 129 цифр. Этот прорыв стал возможен благодаря тому, что за прошедшие 20 лет были не только предложены новые, более быстрые, методы разложения на множители больших чисел, но и возросла производительность используемых компьютеров.

Поэтому квалифицированный криптограф должен проявлять очень большую осторожность и осмотрительность, когда речь заходит о длине открытого ключа. Необходимо учитывать, насколько ценна засекречиваемая с его помощью информация и как долго она должна оставаться в тайне для посторонних.

А почему, спрашивается, не взять 10000-битный ключ? Ведь тогда отпадут все вопросы, связанные со стойкостью асимметричного алгоритма шифрования с открытым ключом, основанном на разложении большого числа на множители. Но дело в том, что обеспечение достаточной стойкости шифра не является единственной заботой криптографа. Имеются дополнительные соображения, влияющие на выбор длины ключа, и среди них - вопросы, связанные с практической реализуемостью алгоритма шифрования при выбранной длине ключа.

Чтобы оценить длину открытого ключа, будем измерять доступную криптоаналитику вычислительную мощь в так называемых мопс-годах, т. е. количеством операций, которые компьютер, способный работать со скоростью 1 миллион операций в секунду, выполняет за год. Допустим, что хакер имеет доступ к компьютерным ресурсам общей вычислительной мощью 10000 мопс-лет, крупная корпорация - 107 мопс-лет, правительство - 109 мопс-лет. Это вполне реальные цифры, если учесть, что при реализации упомянутого выше проекта разложения числа из 129 цифр его участники задействовали всего 0,03\% вычислительной мощи Internet, и чтобы добиться этого, им не потребовалось принимать какие-либо экстраординарные меры или выходить за рамки закона.

Предположим еще, что вычислительная мощь возрастает в 10 раз каждые 5 лет, а метод, который используется для разложения больших чисел на множители, позволяет это делать с трудоемкостью, указанной в табл. 6.3.

Таблица 6.3. Трудоемкость разложения больших чисел на множители

Сделанные предположения позволяют оценить длину стойкого открытого ключа в зависимости от срока, в течение которого необходимо хранить зашифрованные с его помощью данные в секрете (табл. 6.4). При этом необходимо помнить, что криптографические алгоритмы с открытым ключом часто применяются для защиты очень ценной информации на весьма долгий период времени. Например, в системах электронных платежей или при нотариальном заверении электронной подписи. Идея потратить несколько месяцев на разложение большого числа на множители может показаться кому-то очень привлекательной, если в результате он получит возможность рассчитываться за свои покупки по вашей кредитной карточке. Кроме того, я думаю, что вам совсем не улыбается перспектива быть вызванным через 20 лет на заседание суда, на котором рассматривается дело о наследстве, и отстаивать невозможность подделать электронную подпись вашего дедушки, использованную им для составления завещания в вашу пользу.

С приведенными в табл. 6.4 данными согласны далеко не все авторитетные криптографы. Некоторые из них наотрез отказываются делать какие-либо долгосрочные прогнозы, считая это бесполезным делом. Другие, например, специалисты из АНБ, чересчур оптимистичны, рекомендуя для систем цифровой подписи длину открытого ключа всего 512-1024 бита, что в свете данных из табл. 6.4 является совершенно недостаточным для обеспечения надлежащей долговременной защиты.

(MAC). При использовании одного и того же алгоритма результат шифрования зависит от ключа. Для современных алгоритмов сильной криптографии утрата ключа приводит к практической невозможности расшифровать информацию.

Для современных симметричных алгоритмов (AES , CAST5 , IDEA , Blowfish , Twofish) основной характеристикой криптостойкости является длина ключа. Шифрование с ключами длиной 128 бит и выше считается сильным , так как для расшифровки информации без ключа требуются годы работы мощных суперкомпьютеров. Для асимметричных алгоритмов, основанных на проблемах теории чисел (проблема факторизации - RSA , проблема дискретного логарифма - Elgamal) в силу их особенностей минимальная надёжная длина ключа в настоящее время - 1024 бит. Для асимметричных алгоритмов, основанных на использовании теории эллиптических кривых (ECDSA , ГОСТ Р 34.10-2001 , ДСТУ 4145-2002), минимальной надёжной длиной ключа считается 163 бит, но рекомендуются длины от 191 бит и выше.

Классификация ключей

Криптографические ключи различаются согласно алгоритмам, в которых они используются.

  • Секретные (Симметричные) ключи - ключи, используемые в симметричных алгоритмах (шифрование, выработка кодов аутентичности). Главное свойство симметричных ключей: для выполнения как прямого, так и обратного криптографического преобразования (шифрование/расшифровывание, вычисление MAC/проверка MAC) необходимо использовать один и тот же ключ (либо же ключ для обратного преобразования легко вычисляется из ключа для прямого преобразования, и наоборот). С одной стороны, это обеспечивает более высокую конфиденциальность сообщений, с другой стороны, создаёт проблемы распространения ключей в системах с большим количеством пользователей.
  • Асимметричные ключи - ключи, используемые в асимметричных алгоритмах (шифрование, ЭЦП); вообще говоря, являются ключевой парой , поскольку состоят из двух ключей:
    • Закрытый ключ (en:Private key) - ключ, известный только своему владельцу. Только сохранение пользователем в тайне своего закрытого ключа гарантирует невозможность подделки злоумышленником документа и цифровой подписи от имени заверяющего.
    • Открытый ключ (en:Public key) - ключ, который может быть опубликован и используется для проверки подлинности подписанного документа, а также для предупреждения мошенничества со стороны заверяющего лица в виде отказа его от подписи документа. Открытый ключ подписи вычисляется, как значение некоторой функции от закрытого ключа, но знание открытого ключа не дает возможности определить закрытый ключ.

Главное свойство ключевой пары: по секретному ключу легко вычисляется открытый ключ, но по известному открытому ключу практически невозможно вычислить секретный. В алгоритмах ЭЦП подпись обычно ставится на секретном ключе пользователя, а проверяется на открытом. Таким образом, любой может проверить, действительно ли данный пользователь поставил данную подпись. Тем самым асимметричные алгоритмы обеспечивают не только целостность информации, но и её аутентичность. При шифровании же наоборот, сообщения шифруются на открытом ключе, а расшифровываются на секретном. Таким образом, расшифровать сообщение может только адресат и больше никто (включая отправителя). Использование асимметричных алгоритмов снимает проблему распространения ключей пользователей в системе, но ставит новые проблемы: достоверность полученных ключей. Эти проблемы более-менее успешно решаются в рамках инфраструктуры открытых ключей (PKI).

  • Сеансовые (сессионные) ключи - ключи, вырабатываемые между двумя пользователями, обычно для защиты канала связи. Обычно сеансовым ключом является общий секрет - информация, которая вырабатывается на основе секретного ключа одной стороны и открытого ключа другой стороны. Существует несколько протоколов выработки сеансовых ключей и общих секретов, среди них, в частности, алгоритм Диффи - Хеллмана .
  • Подключи - ключевая информация, вырабатываемая в процессе работы криптографического алгоритма на основе ключа. Зачастую подключи вырабатываются на основе специальной процедуры развёртывания ключа.

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Ключ (криптография)" в других словарях:

    Ключ: В Викисловаре есть статья «ключ» Ключ, родник место, где подземные воды вытекают на поверхность земли … Википедия

    Ключ инструмент для открывания замка. Гаечный ключ, разводной ключ инструмент для откручивания болтовых соединений. Ключ (криптография) информация, используемая алгоритмом для преобразования сообщения при шифровании или расшифровании. Ключ… … Википедия

    У этого термина существуют и другие значения, см. Ключ (значения). Ключ в замочной скважине В … Википедия

    - (греч., от kryptos тайный, и grapho пишу). Писание условными знаками (шифрованное), известное только тем лицам, которые получают особый для чтения ключ. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. КРИПТОГРАФИЯ… … Словарь иностранных слов русского языка

    Немецкая криптомашина Lorenz использовалась во время Второй мировой войны для шифрования самых секретных сообщений Криптография (от др. греч … Википедия

    Основная статья: История криптографии Фотокопия телеграммы Циммермана Во время первой мировой войны криптография, и, в особенности, криптоанализ становится одним из инструментов ведения войны. Известны факты … Википедия

    Содержание 1 Российская империя 1.1 Армия 1.2 Флот 2 Британская империя 3 Ф … Википедия

    КРИПТОГРАФИЯ - (от греч. «криптос» тайный, скрытый) искусство письма секретными кодами и их дешифровка. Отсюда произошло понятие «криптограмма», т. е. что либо написанное шифром или в другой форме, которая понятна только тому, кто имеет к написанному ключ. В… … Символы, знаки, эмблемы. Энциклопедия

    Криптография с открытым ключом/PUBLIC KEY CRYPTOGRAPHY - разработана Уайтфильдом Диффи (Whitfielf Diffi). Использует пару ключей, причем каждая пара обладает следующими свойствами: что либо зашифрованное одним из них может быть расшифровано с помощью другого; имея один ключ из пары, называемый открытым … Толковый словарь по информационному обществу и новой экономике

    У этого термина существуют и другие значения, см. Ключ. Ключ в замочной скважине … Википедия