Общение в Интернет

Intel core i5 750 какой сокет. Intel Core i5 на ядре Lynnfield. Топовая архитектура - в массы! Диапазон напряжения VID

С момента появления платформы Nehalem прошло чуть больше года, но цены на новые процессоры по-прежнему нельзя назвать доступными. Расширение современной линейки CPU за счет моделей на базе ядра Lynnfield под LGA1156 никак не повлияли на ценообразование старших собратьев, да и они сами не отличались демократичной стоимостью. До недавнего времени самым экономным процессором на базе новой архитектуры был Core i5-750, что и привело к довольно большой популярности данной модели. И даже недавнее появление процессоров Clarkdale из этой же серии вряд ли пошатнут позиции «старичка», который обладает реальными четырьмя ядрами против четырех «виртуальных» у новинок. Но Clarkdale у нас будет посвящен отдельный материал, а в данной статье, как вы уже догадались, мы сосредоточимся именно на Core i5 750.

В розничную продажу Intel Core i5 750 поставляется в коробочной версии, но иногда можно встретить и tray-варианты, которые обеспечиваются 12-месячной гарантией от продавца.


Стандартный кулер имеет довольно компактные размеры и небольшую высоту радиатора, сердцевина выполнена из меди. По конструкции не отличается от систем охлаждения у процессоров с конструктивом LGA775.



Архитектура процессоров Lynnfield была в подробностях рассмотрена нами в одном из прошлых материалов . Северный мост полностью обосновался в процессоре, который сам обеспечивает поддержку 16 линий PCI Express 2.0. Отсюда, кстати, вытекает и небольшой недостаток платформы, связанный с ограничением пропускной способности интерфейсов двух видеокарт, работающих в режиме CrossFireX. В отличие от предшественников под Socket LGA1366 новые CPU обладают только двухканальным контроллером памяти DDR3. Благодаря множителю x6 (эффективный х12) новые процессоры Core i7 в номинальных режимах могут работать с DDR3-1600 (не официально поддерживаемый стандарт), а младшие Lynnfield, Core i5 750 в частности, при множителе х5 (эффективный x10) с DDR3-1333. Более высокие частоты памяти могут быть задействованы лишь при поднятии базовой частоты (BCLK), и если вы используете высокочастотную память, то для ее профиля X.M.P. плата автоматически поднимет BCLK и снизит множитель на процессоре при соответствующей корректировке напряжений. Для DDR3-2000 опорная частота будет установлена в 200 МГц, а множитель на процессоре Core i7 750 на х14 вместо х20. Если же память не имеет профилей X.M.P. под процессоры LGA1156, то все корректировки пользователю необходимо будет производить в ручном режиме. Частота блока Uncore, включающего контроллер памяти и общий кэш третьего уровня, зафиксирована относительно базовой частоты за счет множителя х16 на 2130 МГц. Шина QPI связывает процессор теперь только лишь с контроллером PCI Express, частота ее формируется как произведение BCLK на x18 (x36), что дает 2400 МГц (4800 ГТ/с). Вручную можно установить и более низкий множитель x16 (x32).



Частота процессора в номинальном режиме 2,66 ГГц при множителе x20. Поддержки Hyper-Threading у четырехъядерного Core i5 750 нет.


Благодаря технологии Turbo Boost при работе приложений, слабо оптимизированных под многопоточность, может повышаться частота отдельных ядер. Этот разгон может составлять до 4 пунктов (по 133 МГц) для одного из ядер. А если точнее, то в однопоточных приложениях загруженное ядро будет функционировать на 3,2 ГГц. Если нагрузка ложится на два ядра, то их частота поднимается до промежуточных значений, и даже при нагрузке на все ядра частота всех их поднимется на один пункт. В последнем случае мы фактически получаем четырехъядерный CPU на частоте 2,8 ГГц (при множителе x21) вместо 2,66 ГГц. Кстати такой множитель можно изначально установить вручную для Core i5 750 в BIOS практически всех материнских плат LGA1156 и без активации режима Turbo Boost.



Для тестов в номинальном режиме мы использовали комплект памяти объемом 4 ГБ (Team TXD34096M2000HC9DC-L), который работал с таймингами 7-7-7-20. Все прочие задержки и настройки отображены ниже на скриншоте утилиты CPU-Tweaker.


Ну и немного слов о разгоне. Осуществляется он повышением базовой частоты. Поскольку от нее зависят частоты других блоков и памяти DDR3, то при необходимости на них понижаются соответствующие множители. Так для DDR3 можно выставить минимальный множитель x6, что в номинале даст частоту 800 МГц, а при разгоне BCLK до 200 МГц уже 1200 МГц. Снижение частоты QPI у процессоров Lynnfield практической пользы для разгона не несет (по крайней мере, при воздушном охлаждении). А вот снизить частоту Uncore в разгоне не выйдет вообще, и при 200 МГц по BCLK этот блок будет работать уже на 3200 МГц. Впрочем, повышение частоты L3-кэша скажется на производительности только положительным образом.

При воздушном охлаждении всем процессорам Core i5 покоряется частота BCLK около 200-220 МГц. Имея в наличии несколько бюджетных материнских плат под Socket LGA1156, мы выяснили, что пределом нашего CPU по базовой частоте (при воздушном охлаждении) являются 220 МГц. При более высоких значениях наблюдалась значительная нестабильность системы. Таким образом, при максимальном множителе x21 «на воздухе» теоретически можно получить даже 4620 МГц. На деле же мы остановились на отметке 4066 МГц, при которых сохранялась полная стабильность в стресс-тестах (OCCT, LinX и пр.). Отметим, что данный результат достигнут на плате Gigabyte GA-P55M-UD2 при напряжении CPU Vcore 1,4 В и QPI/Vtt Voltage около 1,35 В. Дальнейший разгон требовал существенного повышения напряжений для стабильности, что влекло за собой перегрев в стресс-тестах.


Все настройки памяти при разгоне отображены на следующем скриншоте:


Как вы могли заметить выше, частота памяти в разгоне составила лишь 642 МГц (эффективные 1284 МГц). Вообще-то сам комплект памяти Team рассчитан на 2000 МГц, но именно с платой Gigabyte GA-P55M-UD2 при разгоне процессора установить память в более производительный режим было просто невозможно. При более высоком множителе система зависала до загрузки операционной системы, и поднятие соответствующих напряжений не помогло. Да и в номинальном режиме у платы возникли проблемы с работой профиля X.M.P., но данные нюансы мы осветим уже в отдельной статье по этой плате. Из-за «несовместимости» высокой частоты CPU и высоких множителей на памяти (кстати, с чем-то похожим мы встречались у отдельных экземпляров AMD Phenom II) пришлось ограничиться невысоким значением частоты DDR3, но при задержках 6-6-6-16, которые должны хоть как-то компенсировать отставание даже от номинальных 1333 МГц. Для небольшого повышения частоты памяти при минимальном ее множителе специально был снижен и множитель на CPU, чтобы можно было еще выше поднять частоту BCLK.Сравнительные характеристики

Для сравнения производительности рассматриваемого Intel Core i5-750 мы подобрали следующие четырехъядерные процессоры:

  • Intel Core 2 Quad Q8300;
  • Intel Core 2 Quad Q9505;
  • Intel Core 2 Quad Q9450;
  • Intel Core 2 Quad Q9550;
  • AMD Phenom II X4 810;
  • AMD Phenom II X4 940 BE;
  • AMD Phenom II X4 955 BE.
Все эти модели фигурировали в нашем последнем большом тестировании процессоров, откуда вы можете почерпнуть детали о них. Core 2 Quad Q9450 у нас «виртуальный», он получен из Core 2 Quad Q9550 путем снижения множителя с x8,5 до x8 и добавлен в тесты специально, чтобы можно было наглядно оценить преимущества архитектуры Lynnfield над Yorkfield-12M при одной и той же частоте 2,66 ГГц. Так же довольно интересно будет взглянуть насколько выросла производительность младшего четырехъядерного CPU нового поколения относительно младшего представителя прошлого поколения от Intel (Core 2 Quad Q8300) и младшего представителя AMD (Phenom II X4 810). Для того чтобы определить преимущества Turbo Boost, наш Intel Core i5 750 тестировался при зафиксированной стандартной частоте 2,66 ГГц, т.е. с отключенной данной технологией, и, соответственно, при активации ее.
Intel Core 2 Quad Q9550 Intel Core 2 Quad Q9450 Intel Core 2 Quad Q9505 Intel Core 2 Quad Q8300 AMD Phenom II X4 955 BE AMD Phenom II X4 940 BE AMD Phenom II X4 810
Ядро Lynnfield Yorkfield Yorkfield Yorkfield Yorkfield Deneb Deneb Deneb
Разъем LGA1156 LGA775 LGA775 LGA775 LGA775 AM3 AM2+ AM3
Техпроцесс, нм 45 high-k 45 high-k 45 high-k 45 high-k 45 high-k 45 SOI 45 SOI 45 SOI
Кол-во транзисторов, млн. 774 820 820 820 820 758 758 758
Площадь кристалла, кв. мм 296 214 214 214 214 258 258 258
Частота, МГц 2666 (до 3200 в Turbo Boost) 2833 2666 2833 2500 3200 3000 2600
Множитель x20 (до x24 в Turbo Boost) x8,5 x8 x8,5 x7,5 x16 x15 x13
Базовая частота, МГц 133 - - - - 200 200 200
Шина QPI/FSB/HT, МГц, ГТ/с* 4800 1333 1333 1333 1333 4000 3600 4000
Кэш L1, КБ (32+32) x 4 (32+32) x 4 (32+32) x 4 (32+32) x 4 (32+32) x 4 (64+64) x 4 (64+64) x 4 (64+64) x 4
Кэш L2, КБ 256 x 4 6144 x 2 6144 x 2 3072 x 2 2048 x 2 512 x 4 512 x 4 512 x 4
Кэш L3, КБ 8192 - - - - 6144 6144 4096
Напряжение питания, В 0,65—1,4 0,85—1,3625 0,85—1,3625 0,85—1,3625 0,85—1,3625 0,875—1,5 0,875—1,5 0,875—1,425
TDP, Вт 95 95 95 95 95 95 125 125

* — для шин QPI (Intel Core i5-750) и HyperTransport (AMD Phenom II) указана скорость в ГТ/с.

Тестовые конфигурации

Тестовая конфигурация Intel LGA1156:

  • Материнская плата: Gigabyte GA-P55M-UD2;
  • Память: Team TXD34096M2000HC9DC-L (2х2GB DDR3);
  • Видеокарта: Point of View GF9800GTX 512MB GDDR3 EXO (@818/1944/2420 МГц);
  • Звуковая карта: Creative Audigy 4 (SB0610);
  • Жесткий диск: WD3200AAKS (320 ГБ, SATA II);
  • Блок питания: FSP FX700-GLN (700 Вт);
  • Операционная система: Windows Vista Ultimate SP1 x64;
  • Драйвер видеокарты: ForceWare 190.62.
Теперь приведем отличия в тестовых стендах остальных платформ, которые использовались для сравнения с Core i5-750.

Тестовая конфигурация Intel LGA775:

  • Кулер: Thermalright Ultra-120 eXtreme;
  • Материнская плата: ASUS Rampage Formula (Intel X48, Socket LGA775);
  • Память: OCZ OCZ2FXE12004GK (2х2GB DDR2-1200);
Тестовая конфигурация AMD AM2+/AM3:
  • Кулер: Thermalright Ultra-120 eXtreme;
  • Материнские платы: MSI 790XT-G45 (AMD 790X, Socket AM2+), MSI 790FX-GD70 (AMD 790FX, Socket AM3);
  • Память: OCZ OCZ2FXE12004GK (2х2GB DDR2-1200), Kingston KHX1600C9D3K2/4G (2X2GB DDR3-1600);
В операционной системе были отключены Windows Defender, User Account Control и Superfetch. Файл подкачки фиксировался на уровне 1024 МБ. Как отмечалось выше, процессор Core i5-750 тестировался в двух номинальных режимах — с отключенной и включенной технологией Turbo Boost. Режим с активным Turbo Boost на диаграммах обозначен как «Core i5-750 TB». Основные характеристики тестовых стендов и режимы работы памяти для номинальных режимов и в разгоне по каждому процессору приведены ниже в виде двух таблиц. В них вы можете увидеть, что данные по частоте некоторых CPU и их блоков могут отличаться на пару мегагерц относительно стандартных спецификаций, что связано с завышением или занижением опорной частоты и FSB непосредственно самими платами.

Характеристики системы в номинальных режимах:

Процессор Частота процессора, МГц Тип памяти Частота памяти, МГц
Intel Core i5 750 Turbo Boost 2660-3198 DDR3 1330 7-7-7-20 2128 -
2660 DDR3 1330 7-7-7-20 2128 -
Intel Core 2 Quad Q9550 2839 DDR2 1069 5-5-5-18 - 1336
Intel Core 2 Quad Q9450 2672 DDR2 1069 5-5-5-18 - 1336
Intel Core 2 Quad Q9505 2839 DDR2 1069 5-5-5-18 - 1336
Intel Core 2 Quad Q8300 2505 DDR2 1069 5-5-5-18 - 1336
AMD Phenom II X4 955 3200 DDR3 1600 8-8-8-22 2000 -
AMD Phenom II X4 940 3000 DDR2 1067 5-5-5-18 1800 -
AMD Phenom II X4 810 2600 DDR3 1600 8-8-8-22 2000 -

Характеристики системы при разгоне:
Процессор Частота процессора, МГц Тип памяти Частота памяти, МГц Основные задержки (CL, tRCD, tRP, tRAS) Частота Uncore для Intel, NB для AMD, МГц Частота FSB для Intel LGA775, МГц
4066 DDR3 1284 6-6-6-16 3424 -
Intel Core 2 Quad Q9550 3962 DDR2 1165 5-5-5-16 - 466 (1864)
Intel Core 2 Quad Q9505 4004 DDR2 1178 5-5-5-16 - 471 (1884)
Intel Core 2 Quad Q8300 3548 DDR2 1183 5-5-5-16 - 473 (1892)
AMD Phenom II X4 955 3793 DDR3 1640 8-8-8-22 2255 -
AMD Phenom II X4 940 3675 DDR2 1120 5-5-5-18 2100 -
AMD Phenom II X4 810 3725 DDR3 1589 9-8-7-20 2384 -

Методика тестирования

Методика тестирования описана в прошлом материале. Из списка тестов исключен POV-Ray, поскольку встроенный тест производительности в используемой нами версии 3.7 beta 27 работал на платформе LGA1156 некорректно, а в более новых версиях значительно изменились результаты и на старых процессорах. За неимением возможности заново повторить тест в новой версии POV-Ray на процессорах из нашего списка пришлось обойтись без данной программы. Для обшей информации можем лишь отметить, что в POV-Ray 3.7 beta 35 процессор Intel Core i5 750 продемонстрировал результат почти на 10% ниже, чем Core 2 Quad Q9550, а с включенным Turbo Boost на 5% ниже. Из игровых тестов исключен Resident Evil 5 из-за странного поведения «фиксированного теста» и «ограничения» производительности на четырехъядерных CPU после запуска приложения на двухъядерных конфигурациях.
Результаты тестирования

Синтетика. Прикладное ПО

PCMark Vantage


Первый синтетический тест демонстрирует безоговорочное превосходство Core i5-750 над остальными участниками тестирования, превосходя даже Phenom II X4 955, работающий на 3,2 ГГц. В сравнении с Core 2 Quad на базе Yorkfield у Lynnfield преимущество около 13% на одной частоте.


В этом тесте разница уже не столь велика, хотя снова преимущество Lynnfield над старшим Yorkfield стремится к 10%. В отличие от прошлого теста в разгоне Core 2 Quad Q9505 и Core i5-750 демонстрируют идентичные результаты.


В тесте Productivity Suite мы вновь наблюдаем преимущество Lynnfield над Yorkfield с 12МБ кэша около 10%. Если старший процессор AMD в этом тесте обходит соперников Intel прошлого поколения, то Core i5 ему уже «не по зубам».


В этом архиваторе наблюдается и вовсе огромное преимущество Lynnfield над предшественниками — более 30%. Активация Turbo Boost помогает выиграть еще пару процентов, но не более. Лидерские позиции Core i5 с разгоном только укрепляются, и при частоте 4066 МГц этот процессор демонстрирует уже преимущество в 40% над Q9550 и 47% над Phenom II X4 955. Впрочем, результаты теста производительности в WinRar сильно зависят от производительности подсистемы памяти, и при реальном архивировании разница может уже быть не столь ошеломительная.


Архиватор 7-Zip к процессору Lynnfield относится довольно прохладно. Производительность Core i5 лишь немногим выше, чем у Core 2 Quad Q9450. Обойти Q9550 ему удается при активации Turbo Boost. В этом же режиме рассматриваемый процессор не дотягивает лишь 0,6% до показателей Phenom II X4 940, работающего на 3 ГГц. С разгоном Core i5-750 снова оказывается впереди всех.

Paint.Net


В этом тесте Lynnfield на частоте 2,66 ГГц оказался производительнее Yorkfield с 12 МБ кэша с такой же частотой лишь на 1%. В режиме Turbo Boost наш процессор уже идет на равных с Core 2 Quad Q9550. С разгоном же вполне традиционно Core i5 превосходит других соперников, разница с Core 2 Quad вновь не велика, но уже более 3%.

Adobe Photoshop


В Adobe Photoshop младший Lynnfield уверенно обходит всех других соперников Intel даже без Turbo Boost, уступая 11 секунд только AMD Phenom II X4 955. В турбо-режиме Core i5 вне конкуренции, обгоняя старший процессор Phenom II уже более чем на минуту. С разгоном Core i5-750 справляется с задачей почти на две минуты быстрее старших Core 2 Quad, работающих на частотах около 4 ГГц, и почти на три минуты быстрее чем разогнанные до 3,7-3,8 ГГц соперники от AMD.

CineBench


При одной и той же частоте разница между Lynnfield и Yorkfield с 12 МБ кэша достигает 13% в пользу первого. В режиме Turbo Boost процессор Core i5 демонстрирует результаты больше, чем у стальных соперников. Без «турбирования» CPU уступает только Phenom II X4 955 и то менее одного процента. А на частоте 4066 МГц рассматриваемый процессор и вовсе оказывается вне конкуренции: Core 2 Quad на 4 ГГц уступают ему до 19%, а Phenom II X4 на частотах 3,7-3,8 ГГц до 33%.

Кодирование видео Xvid в VirtualDub


И снова никаких неожиданностей. Core i5 справляется с задачей быстрее всех. Только без Turbo Boost идентичный уровень производительности демонстрирует один лишь Phenom II X4 955 (и это при большей на 540 МГц частоте). При одинаковой частоте Lynnfield выигрывает у Yorkfield практически минуту. При разгоне до 4,07 ГГц преимущество Core i5-750 над остальными соперниками при повышенных частотах исчисляется еще большими цифрами. Интересно, что младший Core 2 Quad Q8300 даже на 3,5 ГГц по производительности немного уступает Core i5-750 с Turbo Boost. Да и старший Phenom II X4 только с разгоном до 3,8 ГГц выигрывает у рассматриваемого процессора в таком режиме всего лишь семь секунд.

X264 Benchmark


В номинальных режимах Core i5-750 уступает одному Phenom II X4 955, да и то, не так уж и много. Преимущество Lynnfield над Yorkfield при одной частоте достигает 12%. С разгоном ни один процессор просто не состоянии достойно соперничать с рассматриваемым CPU, который обходит своих предшественников почти на 16%, а представителей AMD на 20% и более.

PHP Benchmark


В этом тесте, чувствительном в основном лишь к частоте самого процессора, Core i5-750 тоже не ударил лицом в грязь, и в режиме Turbo Boost оказался не хуже чем высокочастотный Phenom II X4 955. С разгоном же процессор вновь справляется с задачей быстрее всех, хотя разница с Core 2 Quad уже минимальна.

Fritz Chess Benchmark


Core i5 немного производительнее Core 2 Quad Q9550 только в режиме Turbo Boost. На 2,66 ГГц он незначительно уступает старшим четырехъядерным CPU прошлого поколения, обходя Core 2 Quad Q9450 лишь на 2,8%. С разгоном младший Lynnfield укрепляет свои позиции, обходя ближайших конкурентов (Core 2 Quad Q9505 и Q9550) примерно на 7%.

Super Pi


В этом тестовом приложении Core i5-750 демонстрирует весьма внушительное преимущество над всеми процессорами в номинальном режиме даже без активации Turbo Boost. Относительно Core 2 Quad на ядре Yorkfield с кэшем 12 МБ при одной и той же частоте у Lynnfield преимущество почти 23%. Остальные соперники с разгоном в лучшем случае демонстрируют такой же результат как Core i5 без разгона, но с Turbo Boost.Игровые приложения




Первый игровой тест демонстрирует полное превосходство Core i5-750 над остальными соперниками. Младший Lynnfield умудряется обойти Core 2 Quad Q9550 и Phenom II X4 955 даже без активации Turbo Boost. А при включении этого режима Core i5 демонстрируют такие же результаты, как разогнанные AMD Phenom II X4. У предшественников Intel под Socket LGA775 не все так печально, но с разогнанным Lynnfield они тоже не могут соперничать, не смотря на то, что с разгоном они все достигли частот близких к 4 ГГц.

Battlestations: Pacific




В этой игре, несмотря на высокий fps, мы «уперлись» в возможности видеокарты, и, как следствие, разница в результатах минимальна. Это объясняется и особенностью выбранной скриптовой сценки, которая создает минимальную нагрузку на CPU. В любом случае Core i5 вместе с Core 2 Quad Q9550 демонстрируют самые высокие результаты в этой игре. При активации Turbo Boost заметно минимальное падение производительности, но говорить о чем-то конкретном при такой малой разнице сложно.

X3 Terran Conflict




В этой игре для того, чтобы обойти соперников, Core i5-750 даже не нужен режим Turbo Boost. При активации оного результат рассматриваемого CPU оказывается на 5-10% выше, чем у старшего Core 2 Quad и на 9-17% выше чем у Phenom II X4 955. С разгоном отставание процессоров AMD достигает огромных 25-28%, а Q9550 при своих 3,96 ГГц отстает от лидера с частотой 4,07 ГГц на 8-10%. Младшие Core 2 Quad и Phenom II X4 с разгоном только достигают показателей не разогнанного Core i5 с Turbo Boost.

H.A.W.X.



Одно из немногих игровых приложений, в котором процессоры AMD ощутимо производительнее старых Intel Core 2 Quad, да и то, лишь в низком разрешении. Но более новый Core i5-750, в отличие от предшественников, не уступает конкурентам из «зеленого лагеря», обходя при 2,66 ГГц старший их процессор с частотой 3,2 ГГц на целых 15%. Превосходство Lynnfield над старшими Yorkfield при одной частоте достигает почти 35%! Зато режим Turbo Boost почти никак не сказывается на результате — лишь плюс 3%. При разгоне отрыв лидера от прочих соперников не менее внушительный.


А вот при максимальном качестве изображения расстановка сил меняется. Такой шустрый в более слабом режиме, Core i5-750 внезапно занимает последние места. И что интересно, режим Turbo Boost уже никак не сказывается на производительности, да и от разгона толк небольшой.

World in Conflict



Intel Core i5 в очередной раз демонстрирует недостижимый для соперников уровень производительности. Преимущество над Yorkfield около 30%. Все процессоры кроме Core 2 Quad Q9550 с разгоном лишь приближаются к показателям лидера, работящего в номинале. Да и у Core 2 Quad Q9550 на 3,96 ГГц не особо-то и внушительное преимущество над Core i5-750 с Turbo Boost, учитывая огромную разницу в частоте.


Более высокое разрешение и более тяжелые настройки графики немного умеряют пыл «неудержимого» Core i5-750, и теперь всем разогнанным Core 2 Quad удается обойти его результат в номинальном режиме. По минимальному fps лидер сдает позиции старшим Core 2 Quad еще более ощутимо, и даже в номинале по этому параметру не обходит Core 2 Quad Q9550.

Unreal Tournament 3




В Unreal Tournament 3 несменный лидер отодвигает всех соперников «на задворки». Для процессоров AMD все и вовсе печально — они даже при разгоне до 3,8 ГГц не могут продемонстрировать такие же результаты как Core i5-750 при 2,66 ГГц. Да и над предшественником Core 2 Quad Q9450 преимущество достигает почти 30%, а Core 2 Quad Q9550 уступает значительные 20%. Режим Turbo Boost повышает показатели Lynnfield не более чем на 4%. С разгоном соотношение сил между процессорами Intel почти не меняется, а вот отставание AMD от них лишь увеличивается.

S.T.A.L.K.E.R.: Clear Sky


В отличие от предыдущей игры в этом отечественном проекте Core i5-750 закрепляет за собой лидерство без каких-либо оговорок. Преимущество его над старшими моделями Core 2 Quad и Phenom II X4 достигает почти 30% в низком разрешении и 23% в высоком. Да и с разгоном конкурентам слабо удается хоть как-то наверстать такое отставание. Процессоры AMD по традиции при разгоне до 3,7-3,8 ГГц не достигают показателей Core i5 на номинальных 2,66 ГГц.

Far Cry 2


В низком разрешении Core i5-750 как обычно оказывается «шустрее» всех и «бедные» процессоры AMD снова не могут достигнуть таких же результатов при повышении частот до 3,7-3,8 ГГц.


А вот при максимальных настройках совершенно неожиданно Core i5 вновь становится аутсайдером, как это было в H.A.W.X. И снова никаких преимуществ Turbo Boost не дает, как и разгон (в основном прирост по минимальному fps).


В низком разрешении все вполне предсказуемо и лидерские позиции Core i5-750 неоспоримы. Преимущество Lynnfield над Yorkfield с 12 МБ кэша при одинаковой тактовой частоте 2,66 ГГц составляет 26%. С активированным Turbo Boost (который приносит лишь 3%) преимущество над старшими Core 2 Quad Q9550 и Phenom II X4 955 достигает 21-22%, а при разгоне эти соперники уменьшает свое отставание лишь до 17-20%.


В высоком же разрешении в номинальных режимах лидерство Core i5 тоже не вызывает вопросов, даже несмотря на то, что в таком режиме производительность уже заметно упирается в наш видеоадаптер. А вот с разгоном CPU почему-то демонстрирует результат чуть ниже, чем старшие Core 2 Quad. Разница конечно мизерная, но все же это не погрешность, которая по результатам нескольких прогонов теста обычно укладывается в значительно меньшие рамки.

Crysis Warhead



Crysis Warhead не преподносит сюрпризов и во всех разрешениях Core i5 безоговорочный лидер, а идентичные результаты с Q9550 в 1280х1024 при разгоне вполне объясняются недостаточной мощностью видеокарты, которая и сыграла роль «ограничителя». В низком разрешении преимущество Lynnfield над Yorkfield при одной частоте 2,66 ГГц достигает 17,5%. Активация Turbo Boost помогает повысить результат на 4,5 %, причем таких показателей соперники от AMD не могут достигнуть и в разгоне. Занявший второе место на «пьедестале» Core 2 Quad Q9550 уступает лидеру от 10% (без Turbo Boost) до 16% в номинале и 10% при разгоне.

Grand Theft Auto 4




По результатам тестирования в этой чрезвычайно процессорозависимой игре видно, что и требования к видеоподсистеме у нее тоже довольно высокие, несмотря на далеко не передовую графику. В итоге, что в низком, что в высоком разрешениях мы уперлись в некий «потолок» и различия между процессорами исчисляются совсем мизерными значениями, что при нестабильности самого встроенного бенчмарка зачастую можно списать и на погрешности измерений. Правда, это не мешает в разрешении 1024х768 при средних настройках Core i5-750 вполне уверенно занимать место лидера, а вот при более высоких настройках он уже немного уступает Phenom II X4 955. Зато в этом же режиме (при разрешении 1280х1024) с разгоном, когда результаты всех процессоров, казалось бы, уперлись в граничное значение 56 кадров и выше, уже не «пускает» видеокарта, Core i5 внезапно продемонстрировал более высокий (почти на 1 кадр) результат. А это уже явно выходит за рамки погрешности, и лишний раз демонстрирует мощный потенциал Lynnfield.

Armed Assault 2



Низкие результаты процессоров AMD в этом тестовом приложении мы уже отмечали в недавнем материале . Напомним, что мы используем предрелизную демо-версию игры, которая оснащена своим игровым тестом. Вполне возможно, что в полной версии игры, обросшей огромным числом патчей, производительность Phenom II значительно подросла.

Объект же нашего обзора, Intel Core i5-750, вполне ожидаемо является лидером, но и Core 2 Quad Q9550 отстает от него буквально на считанные проценты. С разгоном же Core i5 при 4,07 ГГц обходит Core 2 Quad Q9550 на 3,96 ГГц уже на более существенные 10%.

Cryostasis: Sleep of Reason (Анабиоз)


В этом слабо оптимизированном под многоядерные процессоры приложении Core i5-750 удается обойти старшие Core 2 Quad Q9505 и Core 2 Quad Q9550 только при активации Turbo Boost. С разгоном наиболее существенное преимущество Lynnfield по минимальному fps (что для этого бенчмарка при программной обработке NVIDIA PhysX как раз более актуально), а по среднему fps с ним наравне идет разогнанный старший Core 2 Quad.

Выводы

Настало время подвести некоторые итоги нашего тестирования. Рассмотренный нами Intel Core i5-750 оказался вне конкуренции на фоне остальных процессоров прошлого поколения и на фоне решений AMD. Почти во всех приложениях он продемонстрировал уровень производительности выше, чем работающий на более высокой частоте Core 2 Quad Q9550, иногда даже и без активации Turbo Boost. Сама же польза от этой технологии авторазгона разных ядер приносит в среднем прирост не более 5%, хотя в редких однопоточных задачах (к примеру, в тесте SuperPi) он может достигать и всех 15%.

Наиболее значительное преимущество у младшего представителя Lynnfield оказалось в игровых тестах, но надо признать, что в ряде приложений ситуация сложилась неоднозначная. При значительном преимуществе над всеми другими CPU при низких настройках Core i5-750 мог немного уступать им при качественной графике в более высоком разрешении. Наиболее ярко это проявилось в FarCry 2, когда при разрешении 1024х768 отрыв Lynnfield от ближайших конкурентов составил чуть ли не 17-20%. Но в то же время при 1280х1024 и рендеринге в DirectX 10 эти же конкуренты демонстрируют результат на 15% выше. В подобных же приложениях и разгон самого CPU приносит минимальную пользу, а активация Turbo Boost и вовсе почти не сказывается на результате. Механизм такого снижения производительности не совсем ясен, можно лишь констатировать, что не всегда Core i5-750 хорош в высоких разрешениях и при высоких настройках графики. Но это не уменьшает достоинств данного процессора. Может он где-то и уступает конкурентам в определенных условиях, но в большей части игр он демонстрирует недостижимую для них производительность, часто при одной и той же частоте превосходство над предшественниками на ядре Yorkfield (с максимальным для них 12 МБ L2-кэша) достигает 30% и более! Показательно и то, что младший Yorkfield с 4 МБ кэш-памяти в ряде приложений достигает сопоставимого уровня производительности только с разгоном до 3,5 ГГц. А ведь и Core i5-750 — это тоже младший представитель своего семейства. Прогресс, как говорится, налицо.

Впрочем, и старшие Core 2 Quad на фоне Core i5-750 в низких разрешениях также не впечатляют, но благодаря разгону до 4 ГГц они еще более-менее сопоставимы с новичком в некоторых игровых приложениях. Что же до разгона самого объекта нашей статьи, его частотный потенциал относительно предшественников немного подрос. Полученные нами 4,07 ГГц вроде и не сильно отличаются от 4 ГГц у Core 2 Quad Q 9505 или 3,96 ГГц у Core 2 Quad Q 9550, но дальнейший разгон Lynnfield ограничился в основном из-за недостаточной производительности кулера Thermalright Ultra-120 eXtreme. Если учитывать, что мы использовали мощный вентилятор на максимальных оборотах, то при работе в тихих режимах с воздушными системами охлаждения в повседневном использовании частотный предел у всех этих процессоров будет примерно один и тот же. А вот пользователи СВО вполне могут рассчитывать и на большие результаты разгона Core i5-750.

Из-за ценовой политики Intel, направленной на продвижение новых продуктов смысла в покупке старшего Core 2 Quad Q9550 сейчас нет, ведь Core i5-750 на локальном рынке обойдется вам как минимум на 65 долларов дешевле при более высокой производительности. Да и Core 2 Quad Q9500 или Core 2 Quad Q9505 тоже не особо привлекательны по цене. Такая ситуация заставляет многих пользователей Core 2 Duo вместо апгрейда на Core 2 Quad задуматься о полной смене платформы. И Core i5-750 в этом случае будет идеальным выбором, ведь при своем уровне производительности это лучший процессор за $200-220.

Процессоры AMD на фоне Core i5-750 вообще смотрятся удручающе, особенно в игровых приложениях. В частности, Phenom II X4 955 при разнице в частоте около 500 МГц в играх почти всегда уступает младшему Lynnfield. На данный момент рассматривать процессоры AM3 как базу для перспективной игровой платформы просто нельзя, и это грустно. Можно парировать, что стоимость продуктов AMD ниже и за цену решения Intel можно взять топовый Phenom II X4 965 с частотой 3,4 ГГц. Вот только помогут ли эти дополнительные 200 МГц, если и 500 МГц не особо помогли Phenom II X4 955?.. Хотелось бы видеть все-таки более достойные и конкурентоспособные решения от AMD, которые смогли бы противостоять не только процессорам прошлого поколения Intel, но и более новым моделям. Будем надеяться, что грядущие Phenom II X6 оправдают наши ожидания.

Тестовое оборудование было предоставлено следующими компаниями:

  • AMD — процессоры AMD Phenom II X4 940 и Phenom II X4 955;
  • DCLink — процессоры Intel Core i5-750, Core 2 Quad Q9550, Core 2 Quad Q9505, Core 2 Quad Q8300, плата Gigabyte GA-P55M-UD2 и память Team TXD34096M2000HC9DC-L;

  • MSI — процессор AMD Phenom II X4 810, платы MSI 790XT-G45 и 790FX-GD70;
  • SerOl — видеокарта Point of View GF9800GTX 512MB GDDR3 EXO;
  • Спецвузавтоматика — память Kingston KHX1600C9D3K2/4G;
  • жесткий диск WD3200AAKS.

Дата выпуска продукта.

Литография

Литография указывает на полупроводниковую технологию, используемую для производства интегрированных наборов микросхем и отчет показывается в нанометре (нм), что указывает на размер функций, встроенных в полупроводник.

Условия использования

Условия использования - это факторы окружающей среды и эксплуатационные характеристики, соответствующие должному использованию системы.
Для получения информации об условиях использования, относящихся к конкретному SKU, см. отчет PRQ .
Текущую информацию об условиях использования см. в материалах Intel UC (сайт соглашения о неразглашении информации)*.

Количество ядер

Количество ядер - это термин аппаратного обеспечения, описывающий число независимых центральных модулей обработки в одном вычислительном компоненте (кристалл).

Количество потоков

Поток или поток выполнения - это термин программного обеспечения, обозначающий базовую упорядоченную последовательность инструкций, которые могут быть переданы или обработаны одним ядром ЦП.

Базовая тактовая частота процессора

Базовая частота процессора - это скорость открытия/закрытия транзисторов процессора. Базовая частота процессора является рабочей точкой, где задается расчетная мощность (TDP). Частота измеряется в гигагерцах (ГГц) или миллиардах вычислительных циклов в секунду.

Максимальная тактовая частота с технологией Turbo Boost

Максимальная тактовая частота в режиме Turbo - это максимальная тактовая частота одноядерного процессора, которую можно достичь с помощью поддерживаемых им технологий Intel® Turbo Boost и Intel® Thermal Velocity Boost. Частота измеряется в гигагерцах (ГГц) или миллиардах вычислительных циклов в секунду.

Кэш-память

Кэш-память процессора - это область быстродействующей памяти, расположенная в процессоре. Интеллектуальная кэш-память Intel® Smart Cache указывает на архитектуру, которая позволяет всем ядрам совместно динамически использовать доступ к кэшу последнего уровня.

Частота системной шины

Шина - это подсистема, передающая данные между компонентами компьютера или между компьютерами. В качестве примера можно назвать системную шину (FSB), по которой происходит обмен данными между процессором и блоком контроллеров памяти; интерфейс DMI, который представляет собой соединение "точка-точка" между встроенным контроллером памяти Intel и блоком контроллеров ввода/вывода Intel на системной плате; и интерфейс Quick Path Interconnect (QPI), соединяющий процессор и интегрированный контроллер памяти.

Расчетная мощность

Расчетная тепловая мощность (TDP) указывает на среднее значение производительности в ваттах, когда мощность процессора рассеивается (при работе с базовой частотой, когда все ядра задействованы) в условиях сложной нагрузки, определенной Intel. Ознакомьтесь с требованиями к системам терморегуляции, представленными в техническом описании.

Диапазон напряжения VID

Диапазон напряжения VID является индикатором значений минимального и максимального напряжения, на которых процессор должен работать. Процессор обеспечивает взаимодействие VID с VRM (Voltage Regulator Module), что, в свою очередь обеспечивает, правильный уровень напряжения для процессора.

Доступные варианты для встраиваемых систем

Доступные варианты для встраиваемых систем указывают на продукты, обеспечивающие продленную возможность приобретения для интеллектуальных систем и встроенных решений. Спецификация продукции и условия использования представлены в отчете Production Release Qualification (PRQ). Обратитесь к представителю Intel для получения подробной информации.

Макс. объем памяти (зависит от типа памяти)

Макс. объем памяти означает максимальный объем памяти, поддерживаемый процессором.

Типы памяти

Процессоры Intel® поддерживают четыре разных типа памяти: одноканальная, двухканальная, трехканальная и Flex.

Макс. число каналов памяти

От количества каналов памяти зависит пропускная способность приложений.

Макс. пропускная способность памяти

Макс. пропускная способность памяти означает максимальную скорость, с которой данные могут быть считаны из памяти или сохранены в памяти процессором (в ГБ/с).

Расширения физических адресов

Расширения физических адресов (PAE) - это функция, обеспечивающая возможность получения 32-разрядными процессорами доступа к пространству физических адресов, превышающему 4 гигабайта.

Редакция PCI Express

Редакция PCI Express - это версия, поддерживаемая процессором. PCIe (Peripheral Component Interconnect Express) представляет собой стандарт высокоскоростной последовательной шины расширения для компьютеров для подключения к нему аппаратных устройств. Различные версии PCI Express поддерживают различные скорости передачи данных.

Конфигурации PCI Express ‡

Конфигурации PCI Express (PCIe) описывают доступные конфигурации каналов PCIe, которые можно использовать для привязки каналов PCH PCIe к устройствам PCIe.

Макс. кол-во каналов PCI Express

Канал PCI Express (PCIe) состоит из двух пар каналов сигнализации, один из которых предназначен для приема, а другой - для передачи данных, и этот канал является базовым модулем шины PCIe. Число каналов PCI Express представляет собой общее число каналов, поддерживаемых процессором.

Поддерживаемые разъемы

Разъемом называется компонент, которые обеспечивает механические и электрические соединения между процессором и материнской платой.

T CASE

Критическая температура - это максимальная температура, допустимая в интегрированном теплораспределителе (IHS) процессора.

Технология Intel® Turbo Boost ‡

Технология Intel® Turbo Boost динамически увеличивает частоту процессора до необходимого уровня, используя разницу между номинальным и максимальным значениями параметров температуры и энергопотребления, что позволяет увеличить эффективность энергопотребления или при необходимости «разогнать» процессор.

Соответствие платформе Intel® vPro™ ‡

Технология Intel® vPro™ представляет собой встроенный в процессор комплекс средств управления и обеспечения безопасности, предназначенный для решения задач в четырех основных областях информационной безопасности: 1) Управление угрозами, включая защиту от руткитов, вирусов и другого вредоносного ПО 2) Защита личных сведений и точечная защита доступа к веб-сайту 3) Защита конфиденциальных личных и деловых сведений 4) Удаленный и местный мониторинг, внесение исправлений, ремонт ПК и рабочих станций.

Технология Intel® Hyper-Threading ‡

Intel® Hyper-Threading Technology (Intel® HT Technology) обеспечивает два потока обработки для каждого физического ядра. Многопоточные приложения могут выполнять больше задач параллельно, что значительно ускоряет выполнение работы.

Технология виртуализации Intel® (VT-x) ‡

Технология Intel® Virtualization для направленного ввода/вывода (VT-x) позволяет одной аппаратной платформе функционировать в качестве нескольких «виртуальных» платформ. Технология улучшает возможности управления, снижая время простоев и поддерживая продуктивность работы за счет выделения отдельных разделов для вычислительных операций.

Intel® VT-x с таблицами Extended Page Tables (EPT) ‡

Intel® VT-x с технологией Extended Page Tables, известной также как технология Second Level Address Translation (SLAT), обеспечивает ускорение работы виртуализованных приложений с интенсивным использованием памяти. Технология Extended Page Tables на платформах с поддержкой технологии виртуализации Intel® сокращает непроизводительные затраты памяти и энергопотребления и увеличивает время автономной работы благодаря аппаратной оптимизации управления таблицей переадресации страниц.

Архитектура Intel® 64 ‡

Архитектура Intel® 64 в сочетании с соответствующим программным обеспечением поддерживает работу 64-разрядных приложений на серверах, рабочих станциях, настольных ПК и ноутбуках.¹ Архитектура Intel® 64 обеспечивает повышение производительности, за счет чего вычислительные системы могут использовать более 4 ГБ виртуальной и физической памяти.

Набор команд

Набор команд содержит базовые команды и инструкции, которые микропроцессор понимает и может выполнять. Показанное значение указывает, с каким набором команд Intel совместим данный процессор.

Расширения набора команд

Расширения набора команд - это дополнительные инструкции, с помощью которых можно повысить производительность при выполнении операций с несколькими объектами данных. К ним относятся SSE (Поддержка расширений SIMD) и AVX (Векторные расширения).

Состояния простоя

Режим состояния простоя (или C-состояния) используется для энергосбережения, когда процессор бездействует. C0 означает рабочее состояние, то есть ЦПУ в данный момент выполняет полезную работу. C1 - это первое состояние бездействия, С2 - второе состояние бездействия и т.д. Чем выше численный показатель С-состояния, тем больше действий по энергосбережению выполняет программа.

Усовершенствованная технология Intel SpeedStep®

Усовершенствованная технология Intel SpeedStep® позволяет обеспечить высокую производительность, а также соответствие требованиям мобильных систем к энергосбережению. Стандартная технология Intel SpeedStep® позволяет переключать уровень напряжения и частоты в зависимости от нагрузки на процессор. Усовершенствованная технология Intel SpeedStep® построена на той же архитектуре и использует такие стратегии разработки, как разделение изменений напряжения и частоты, а также распределение и восстановление тактового сигнала.

Технология Intel® Demand Based Switching

Intel® Demand Based Switching - это технология управления питанием, в которой прикладное напряжение и тактовая частота микропроцессора удерживаются на минимальном необходимом уровне, пока не потребуется увеличение вычислительной мощности. Эта технология была представлена на серверном рынке под названием Intel SpeedStep®.

Технологии термоконтроля

Технологии термоконтроля защищают корпус процессора и систему от сбоя в результате перегрева с помощью нескольких функций управления температурным режимом. Внутрикристаллический цифровой термодатчик температуры (Digital Thermal Sensor - DTS) определяет температуру ядра, а функции управления температурным режимом при необходимости снижают энергопотребление корпусом процессора, тем самым уменьшая температуру, для обеспечения работы в пределах нормальных эксплуатационных характеристик.

Новые команды Intel® AES

Команды Intel® AES-NI (Intel® AES New Instructions) представляют собой набор команд, позволяющий быстро и безопасно обеспечить шифрование и расшифровку данных. Команды AES-NI могут применяться для решения широкого спектра криптографических задач, например, в приложениях, обеспечивающих групповое шифрование, расшифровку, аутентификацию, генерацию случайных чисел и аутентифицированное шифрование.

Бит отмены выполнения - это аппаратная функция безопасности, которая позволяет уменьшить уязвимость к вирусам и вредоносному коду, а также предотвратить выполнение вредоносного ПО и его распространение на сервере или в сети.

Данный материал открывает собой ряд заметок, в которых я буду рассказывать вам о разгонном потенциале интересных железок. Процессоры, видеокарты, оперативная память – вот три основных комплектующих, которые разгоняет каждый оверклокер. Идея создания базы по разгону существует уже достаточно давно, но только статистические данные слушком скудны, поэтому мы вам будем рассказывать о своих впечатлениях от разгона наших подопечных.

Стартуем мы, пожалуй, с наиболее интересных на данный момент процессоров компании Intel – Core i5 750. Самые дешевые процессоры современного поколения сегодня столкнутся лицом друг с другом, и мы узнаем, кто же из 8 экземпляров окажется лучшим.

Тестовый стенд

реклама

Для изучения платформы под сокет 1156, нами была выбрана следующая конфигурация:
  • Материнская плата Asus P7P55D Deluxe
  • Кулер Scythe Ninja 2
  • Оперативная память 2х2Gb OCZ Flex 1600Мгц CL6 1.65в
  • Видеокарта Saphire 4890 OC (затычка в PCI-E обязательна)
  • Блок питания Chiftec 1200W
  • Жесткий диск Seagate 7200.12 250Gb

C материнской платой от Asus на чипсете P55 столкнулся впервые и хочу отметить, что первое знакомство можно считать успешным. Плата легко и беспроблемно работала со всеми выставляемыми напряжениями. Из особенностей хочется отметить, что выставляемое в БИОСе напряжение на процессор совпадало по показаниям с CPU-Z, что очень радует.

Методика тестирования

Все восемь процессоров были протестированы на три частоты:

  • max valid frequency – максимально завалидированная частота CPU-Z.
  • max bench frequency – частота, на которой можно заставить работать процессор в нетяжелых бенчмарках, за показатель принят тест Super Pi1M.
  • max stable frequency – частота, на которой процессор будет трудиться 24 часа 7 дней в неделю 365 дней в году, не выключаясь ни на секунду. Естественно, я шучу - в наших условиях экспресс тестирования сложно найти действительно стабильную частоту. Но в качестве предполагаемой мы возьмём частоту прохождения теста Hyper Pi 32M – тот же Super Pi32M только многопоточный.

Из настроек в БИОСе были использованы:

  • CPU Voltage: 1,35-1,45 В;
  • CPU PLL:1,9-2,0 В;
  • IMC Voltage:1,4 В;
  • Dram Bus Voltage: 1,65 В.

реклама

Разгон системы выполнялся из-под Windows утилитой от Asus – TurboV. Для тестов использовалась операционная система Windows XP SP2.

Max valid
frequency, МГц
Max bench
frequency, МГц
Max stable
frequency, МГц
Батч Напряжение
на ядре, В
Валидация
CPU-Z
Скриншот
Super Pi1M
Скриншот
Hyper Pi32M
1 4577 4465 4274 L922B943 1,432
2 4535 4442 4233 L922B943 1,432
3 4527 4380 4213 L922B943 1,400
4 4577 4400 4256 L922B943 1,408
5 4527 4360 4214 L924B920 1,440
6 4600 4535 4337 L930B637 1,448
7 4536 4464 4256 L922B943 1,440
8 4577 4442 4274 L922B943 1,440

Выводы

В тестировании приняли участие восемь процессоров трех недель выпуска: шесть экземпляров – 22-й недели, один экземпляр – 24-й недели и один экземпляр 30-й недели. По результатам можно выявить победителя нашего тестирования: им стал экземпляр с порядковым номером 6, выпущенный на 30-й недели 2009 года. Данный процессор наиболее холодный, и ему единственному покорились заветные цифры в 4,6 ГГц. Крепкими середняками можно назвать процессоры 22-й недели выпуска, половина из процессоров показала близкие к 4600 МГц результаты, но в то же время другая половина разогналась на 50 МГц хуже. И самым неудачным, на мой взгляд, стал процессор, выпущенный на 24-й неделе 2009 года, его отличительными особенностями стали горячий нрав и нулевая реакция на повышение напряжения выше, чем 1,4 В.

Частота, на которой процессоры смогли выдержать Super Pi1M в среднем составила 4400-4450 МГц, лучший проц смог пройти 1M на 4535 МГц, а худший только лишь на 4380 МГц. 100 МГц в бенчмаркинге значат очень много. А вот по стабильности у всех процессоров разброс по частоте не такой уж и высокий. Каждый выдержал 4200 МГц, победитель даже 4300 МГц.С уверенностью для домашней системы можно ставить 4 ГГц и эксплуатировать компьютер в своё удовольствие.

В 2009 году американский производитель микропроцессоров Intel презентовал новую модельную линейку кристаллов, построенных на базе современной архитектуры Lynnfield. Самым дешевым процессором из этой линейки стал Core i5 750, технические характеристики которого были практически идентичны прошлогодней линейке. Тем не менее эти кристаллы пользуются большой популярностью среди пользователей и позволяют решать многие современные задачи.

Позиционирование на рынке и ценовой диапазон

Инженеры из раздела разработки инновационных технологий, при разработке процессорного разъема LGA 1156 поделило рынок кристаллов на несколько категорий:

— Процессоры серии Celeron и Penrium. Первые были предназначены для сборки бюджетных системных блоков, идеально подходящих для выполнения офисных задач, а вторые обладали более высоким уровнем производительности, достаточным для запуска некоторых современных компьютерных игр с низкими настройками графического интерфейса. Основное отличие между обеими представителями заключалось в объеме кеш-памяти и тактовой частоте, благодаря которым достигается более высокое быстродействие;

— CPU семейства Core i3 и i5, к которым и принадлежит модель кристалла, рассматриваемого в нашей сегодняшней статье. Эти процессоры рассчитаны на продвинутых юзеров, нуждающихся в повышенной производительности. Бюджетные модели имеют всего два физических ядра, однако, благодаря технологии гиперпоточности, способной обрабатывать программный код в четыре потока, эти решения ничем не уступают аналогичным процессорам AMD, имеющим по 4 ядра. Модели CPU линейки Core i5 являются более мощными за счет полноценных четырех ядер, увеличенного кеша, а также фирменной технологии TurboBoost, осуществляющей колоссальный прирост производительности при выполнении более сложных задач.

— Кристаллы Core i7 являются идеальным решением для энтузиастов и профессионалов, которые ввиду специфики своей деятельности нуждаются в мощных производительных стационарных компьютерах. Эти модели процессоров обладают четырьмя физическими ядрами и технологией HyperThreading, благодаря чему кристалл способен работать в восьмипоточном режиме. Помимо этого, эта линейка микропроцессоров обладает увеличенным объемом кеш-памяти и повышенной тактовой частотой.

Несмотря на то что CPU Core i5 750 и является представителем среднего ценового диапазона, по своим аппаратным характеристикам и уровню производительности он вполне может составить достойную конкуренцию некоторым своим более старшим собратьям. Все дело в том, что большинство современных программ и компьютерных игр созданы для работы с четырехъядерными процессорами, поэтому ощутимой разницы в процессе выполнения различных задач между нашим сегодняшним героем и флагманскими линейками кристаллов не наблюдается.

Заводская комплектация

Потребителям доступно два варианта поставки этого процессора: Tray и Box. Первый вариант является более дешевым и, помимо самого микропроцессора, потребитель при покупке получает ФГТ, фирменную наклейку Intel, которую можно наклеить на системный блок, и инструкцию эксплуатации. Треевская комплектация рассчитана преимущественно на более продвинутых пользователей, которые собирают мощный системный блок самостоятельно и хотят установить более производительную систему охлаждения для своего ЦП. Боксовая версия, которая среди обычных обывателей называется коробочная, помимо всего вышеперечисленного, содержит фирменный вентилятор охлаждения Intel и термопасту, для обеспечения лучшей теплопроводимости между кристаллом и охлаждающим радиатором.

CPU Core i5 750 предназначен для работы со всеми материнскими платами, разработанными на базе сокета LGA1156. Особенностью этого разъема является то, что он предполагает работу на одном чипе. На момент поступления процессора в продажу, Socket LGA1156 позволял собирать совершенно разные системные блоки: от бюджетных и простеньких машин, до мощных игровых компьютеров. Этот процессорный разъем популярностью до 2011 года, после чего он был постепенно вытеснен более современным LGA1155. Тем не менее многие юзеры и в наши дни продолжают пользоваться процессорами и материнками с сокетом 1156 благодаря тому, что их производительности хватает и по сей день для решения большого количества задач.

Технологический процесс

Учитывая тот факт, что CPU Core i5 750 поступил на прилавки магазинов в 2009 году, вполне очевидно, что он был изготовлен по сорока пяти нанометровому технологическому процессу, который был на то время одним из наиболее современных. Эта технология позволяла создавать надежные и производительные процессоры, проблем с которыми не возникало. Позднее, инженеры из компании Intel разработали тридцати двух нанометровый технологический процесс, который позволил создавать более тонкие кристальные пластины.

Архитектура

Как уже упоминалось в начале статьи, CPU Core i5 750 разработан на базе четырех физических ядер. При этом поддержка технологии HyperThreading в этой модели не предусмотрена, в результате чего процессор работает в четырехпоточном режиме. Тем не менее это никак не помешало кристаллу справляться с самыми сложными задачами и работать со всем современным программным обеспечением. Поэтому если сравнивать его с представителями кристаллов более старшего поколения Core i7, то разница в скорости выполнения задач будет незаметна.

Кеш-память

Как и любой другой современный процессор, в Core i5 750 реализована трехуровневая кеш-память, которая обладает следующими аппаратными характеристиками:

— Кеш-память первого уровня состоит из четырех кластеров, каждый из которых равен 64 Кб, работающих с одним вычислительным модулем;

— Кеш-память второго уровня устроена также, однако, размер каждого блока составляет 256 килобайт;

— Кеш третьего уровня используется всеми вычислительными модулями процессора, а размер каждого кластера составляет 2 мегабайта.

Совместимость с RAM-памятью

Одной из ключевых особенностей процессорного разъема 1156 является то, что инженеры полностью переработали совместимость с модулями RAM-памяти. Среди основных изменений является перенос северного моста, отвечающего за подачу питания на кристалл, и контроллера оперативки на ЦП, благодаря чему инженерам удалось существенно увеличить скорость работы RAM-памяти. Что касается совместимости с модулями ОЗУ, то Core i5 750 поддерживает работу с планками оперативки DDR третьего поколения и пропускной способностью 1066 Мб. При этом стоит отметить, что установка более дорогой RAM-памяти, поддерживающей более высокую частоту, никакого прироста к скорости обмена информации между ОЗУ и микропроцессором не дает.

Тепловой пакет и рабочая температура

Тепловой пакет микропроцессора, рассматриваемого в нашей сегодняшней статье, составляет 95 ватт. Таким образом, максимальная температура кристалла при выполнении сложных операций не превышает 72 градуса. Температура в штатном режиме работы находится в районе 45 градусов, а после оверклокинга она возрастает до 55 градусов. Однако это все касается официальной информации, предоставленной производителем, но как ведет себя этот кристалл на практике? При максимальной нагрузке довести процессор до максимальной температуры возможно только при выходе из строя охлаждающего кулера, или при работе разогнанного CPU с ресурсоемкими приложениями на слабой системе охлаждения.

Тактовая частота

Максимальная частота работы Core i5 750 составляет 2,7 GHz, которая при выполнении повседневных задач не задействуется. В кристалле реализована поддержка инновационной технологии TurboBoost, которая автоматически на программном уровне регулирует тактовую частоту каждого ядра в зависимости от сложности выполняемых операций. При одновременной работе четырех ядер в четырехпоточном режиме пиковое значение тактовой частоты составляет 2,8 гигагерца, а при выполнении задач в 2 потока этот показатель возрастал до 2,93 GHz. А вот при работе только одного вычислительного блока, частота работы могла возрастать до 3,2 гигагерца. Помимо этого, производитель поставляет кристалл в магазины с разблокированным множителем, поэтому любой желающий может разогнать CPU и получить тридцати процентный прирост производительности.

Розничная стоимость и отзывы потребителей

Покупка CPU Core i5 750 обойдется юзерам приблизительно в 213 долларов, что весьма приемлемо, поскольку в 2009 году на базе этого кристалла можно было собрать мощную геймерскую машину. Более того, и в наши дни этот CPU не утратил своей актуальности и превосходно справляется с любыми поставленными задачами. Кое-какие проблемы могут возникнуть при запуске самых свежих компьютерных игр с максимальными настройками графических эффектов, а вот на минималках этот малыш обеспечивает весьма комфортный игровой процесс.

Заключение

CPU Core i5 750 от корпорации Intel стал настоящим шедевром высоких технологий в 2009 году, востребованность которого сохраняется и по сей день. Этот кристалл станет отличным решением для большинства среднестатистических юзеров, которые не разграничивают работу и отдых, и используют свой компьютер как для офисных задач, так и чтобы насладиться любимыми игрушками. Основными преимуществами этой модели является невысокая стоимость, превосходная производительность и небольшое энергопотребление.

Введение

Запуск платформы Intel LGA 1156 оказался очень успешным, публикации в онлайновых изданиях и мнения пользователей оказались весьма позитивными. Наши первые статьи насчёт Core i5 охватывали технологии процессоров и платформ , а также производительность в играх . Теперь настало время изучить возможности разгона новых процессоров. Насколько хорошо можно разогнать последнюю платформу Intel? Каково будет влияние технологии Turbo Boost? Как насчёт энергопотребления на увеличенных тактовых частотах? На все эти вопросы мы постараемся ответить в статье.


P55: “Следующий BX?”

Эту фразу часто используют для описания нового чипсета или платформы, у которой есть потенциал стать стандартом де-факто, то есть доминировать над всеми прямыми конкурентами большее время, чем подразумевает жизненный цикл обычного продукта. Давным-давно чипсет 440BX, с которым работало второе поколение Pentium II, стал наиболее популярным набором системной логики, хотя некоторые конкуренты предлагали на бумаге большие характеристики. BX обеспечивал немало за свою цену, и журналисты очень часто вспоминают название этого продукта.

Многие пользователи всё ещё работают на Pentium 4, Pentium D или Athlon 64/X2 или даже на первом поколении систем Core 2 - и они хотят сделать апгрейд до четырёх ядер, а также, возможно, поставить Windows 7. Core i5 - один из самых привлекательных вариантов по соотношению цена/производительность на сегодня, особенно для пользователей с серьёзными амбициями разгона.

Есть ли у платформы P55 потенциал стать следующей BX? И да, и нет. С одной стороны, Intel будет продвигать интерфейс сокета LGA 1156 не меньше пары лет, хотя раскладка контактов и электрические спецификации могут меняться. Из того, что мы знаем сегодня, можно предположить, что базовая платформа доживёт до 2011 года, и на этот сокет можно будет устанавливать все 32-нм процессоры Westmere. Так что да, хорошие перспективы у него есть.

Впрочем, есть некоторые функции, которые обещают вскоре стать актуальными и которые платформа P55 сегодня не поддерживает. Первая - USB 3.0. Вторая - SATA с интерфейсом 6 Гбит/с. Конечно, ускоренный интерфейс SATA будет существенно влиять только на SSD на основе флэш-памяти и на оснастки eSATA, у которых подключаются несколько накопителей через один интерфейс eSATA. Но USB 3.0, как нам кажется, должен стать обязательным стандартом после своего появления, поскольку большинство внешних накопителей обычно ограничены пропускной способностью всего 30 Мбайт/с из-за "узкого места" в виде интерфейса USB 2.0.

Разгон: хорошие скорости, но некоторые препятствия

Для нашего проекта мы использовали материнскую плату MSI P55-GD65, планируя разогнать процессор Core i5-750 начального уровня до 4,3 ГГц. Однако мы смогли достичь частот чуть выше 4 ГГц, выключив некоторые важные функции процессора.

Выбор лучшего процессора LGA 1156 для разгона



Нажмите на картинку для увеличения.

Intel пока что выпустила три разных процессора, все из которых базируются на интерфейсе LGA 1156: Core i5-750 на 2,66 ГГц, Core i7-860 на 2,8 ГГц и самый быстрый Core i7-870 на 2,93 ГГц. Эти процессоры отличаются не только штатной тактовой частотой, но и реализацией функции ускорения Turbo Boost. Процессоры линейки 800 могут ускорять отдельные ядра более агрессивно, чем другие модели. Позвольте привести небольшую таблицу.

Turbo Boost: доступные шаги (в допустимых пределах TDP/A/Temp)
Модель процессора Штатная частота 4 ядра активны 3 ядра активны 2 ядра активны 1 ядро активно
Core i7-870 2,93 ГГц 2 2 4 5
Core i7-860 2,8 ГГц 1 1 4 5
Core i5-750 2,66 ГГц 1 1 4 4
Core i7-975 3,33 ГГц 1 1 1 2
Core i7-950 3,06 ГГц 1 1 1 2
Core i7-920 2,66 ГГц 1 1 2 2

Многие ожидают, что более быстрые модели процессоров будут разгоняться лучше, но это не всегда подтверждается на практике. Поскольку ядра у всех существующих процессоров LGA 1156 одинаковые, мы решили сначала проанализировать цены. И цена при покупке в партии 1000 штук у Core i7-870 составляет $562. Мы считаем, что это несколько дороговато для энтузиастов, желающих получить оптимальное соотношение цена/производительность, поэтому мы решили обратить внимание на оставшиеся модели: Core-i7-860 за $284 и i5-750 за $196.

Поскольку в нашем обзоре в момент запуска процессора и связанных с ним статьях мы обычно использовали более быстрые модели, то мы изначально решили в проекте разгона взять процессор начального уровня. Действительно, эта модель будет наиболее привлекательной для большинства наших читателей.

Мы начнём со штатной тактовой частоты 2,66 ГГц, причём реализация Turbo Boost у данной модели может увеличивать тактовую частоту до максимума 3,2 ГГц. Так как процессор Core i7-870 достигает частоты 3,6 ГГц при максимальном режиме Turbo Boost для одного ядра, мы решили начать разгон с частоты 3,6 ГГц, после чего мы проверим, какую максимальную частоту сможет достичь самый доступный процессор Core i5.

Описание платформы



Нажмите на картинку для увеличения.

В Интернете можно найти много результатов успешного разгона разных платформ на архитектуре LGA 1156 (есть также результаты, которых лучше избежать; дополнительные детали мы привели в обзоре материнских плат начального уровня на чипсете P55 ). Все крупные производители материнских плат считают чипсет P55 ключевым продуктом, поэтому все они инвестируют в разработку немало средств. Мы уже использовали три разных материнских платы на чипсете P55 в статье, посвящённой выпуску процессора , поэтому для разгона решили взять флагманскую модель MSI P55-GD65. На рынке также присутствует модель P55-GD80, у которой более крупная система охлаждения на тепловых трубках, а также три слота x16 PCI Express 2.0 вместо двух. Однако три слота P55-GD80 ограничены числом линий 16, 8 и 4, а плата P55-GD65 работает в конфигурациях с 16 и 8 линиями.

MSI реализовала динамический стабилизатор напряжения с семью фазами, систему охлаждения с тепловыми трубками и многие другие функции, которые производители материнских плат обычно устанавливают на модели для оверклокеров. Плату MSI отличает от многих других небольшая особенность: система облегчения разгона OC Genie - простое решение, которое автоматически разгоняет вашу систему, увеличивая базовую частоту после активации. MSI утверждает, что система сама управляет всеми необходимыми настройками, но данная функция требует высококачественных компонентов платформы. Но для данного обзора мы решили отказаться от всех необычных функций и выбрали традиционный способ разгона.

Мы установили последнюю версию BIOS, которая позволяет выключить защиту Intel Overspeed, после чего приступили к нашему проекту разгона. Самый большой множитель, который мы могли выбрать, соответствовал максимальному режиму Turbo Boost с активными четырьмя ядрами - то есть на один шаг больше 20x по умолчанию (21 x 133 = 2,8 ГГц). Мы получили более высокую тактовую частоту, увеличив базовую частоту до 215 МГц.



Нажмите на картинку для увеличения.

Штатное напряжение i5-750 составляет 1,25 В - и при нём мы смогли достичь как раз такой же максимальной тактовой частоты, которую Intel указывает для процессора Core i7-870 с максимальным режимом Turbo Boost с одним ядром: 3,6 ГГц.


3,6 ГГц в режиме бездействия.


3,6 ГГц - настройки памяти.

Результат весьма впечатляет, но мы и не ждали меньшего. Мы могли разгонять процессоры Core i7 на сокете LGA 1366 точно таким же образом без особого подъёма напряжения.


3,7 ГГц в режиме бездействия.


3,7 ГГц под нагрузкой.


3,7 ГГц - настройки памяти.

Частоты 3,8 ГГц мы достигли без особых проблем. Однако нам пришлось увеличить напряжение в BIOS с 1,25 до 1,32 В.


3,8 ГГц в режиме бездействия.


3,8 ГГц под нагрузкой.


3,8 ГГц - настройки памяти.


3,9 ГГц в режиме бездействия.


3,9 ГГц под нагрузкой.


3,9 ГГц - настройки памяти.


4,0 ГГц в режиме бездействия.


4,0 ГГц под нагрузкой.


4,0 ГГц - настройки памяти.

Мы смогли достичь 4,0 ГГц с дальнейшим повышением напряжения до 1,45 В. Мы также увеличили напряжение чипсета PCH (P55), чтобы гарантировать стабильность, но наши первые проблемы не проявили себя до частоты 4,1 ГГц.

Помните, что именно напряжение 1,45 В оказалось проблемным, когда мы проводили тесты недорогих материнских плат . Три модели на P55 (ASRock, ECS и MSI) вышли из строя. Мы планируем выпустить материал на следующей неделе, в котором мы рассмотрим шаги, сделанные каждым производителем для решения выявленных недостатков.


4,1 ГГц в режиме бездействия.


4,1 ГГц под нагрузкой.


4,1 ГГц - настройки памяти.

Мы смогли заставить работать процессор Core i5-750 на частоте 4,1 ГГц, выставив напряжение Vcore в BIOS на уровне 1,465 В, но система не смогла вернуться с пикового режима нагрузки в режим бездействия без краха. Дальнейшее увеличение напряжения процессора или платформы также не помогло. Мы смогли и дальше повышать тактовые частоты, когда выключили поддержку C-состояний в BIOS.

К великому сожалению энергопотребление системы после данного шага в режиме бездействия возросло на существенные 34 Вт. Конечно, мы смогли достичь более высоких тактовых частот, но также получили наглядное доказательство того, что лучше сохранять процессор в наименьшем возможном состоянии работы в режиме бездействия, чтобы транзисторы и целые функциональные блоки отключались тогда, когда они не нужны.


4,2 ГГц в режиме бездействия.


4,2 ГГц под нагрузкой.


4,2 ГГц - настройки памяти.

Чтобы добиться стабильной работы на частоте 4,2 ГГц нам пришлось увеличить напряжение до 1,52 В.


4,3 ГГц в режиме бездействия.


4,3 ГГц под нагрузкой.


4,3 ГГц - настройки памяти.

Увеличив напряжение нашего Core i5-750 до 1,55 В, мы смогли достичь 4,3 ГГц, но эта настройка уже не имела значения. Система работала достаточно стабильно, чтобы провести тесты Fritz и снять показания CPU-Z, но мы не смогли завершить весь пакет тестов. Впрочем, мы всё равно не рекомендуем данную настройку для повседневной работы, поскольку энергопотребление в режиме бездействия увеличивается до 127 Вт. Давайте посмотрим, какой уровень производительности мы сможем получить после разгона до 4,2 ГГц, и как такая частота повлияет на эффективность.

Таблица тактовых частот и напряжений

Разгон Core i5-750 3600 МГц 3700 МГц 3800 МГц
Множитель 20 20 20
74 Вт 75 Вт 77 Вт
179 Вт 190 Вт 198 Вт
BIOS Vcore 1,251 В 1,301 В 1,32 В
CPU-Z VT 1,208 В 1,256 В 1,264 В
Cpu VTT 1,101 В 1,149 В 1,149 В
PCH 1,81 Вт 1,81 Вт 1,85 Вт
Память 1,651 В 1,651 В 1,651 В
Результаты теста Fritz Chess 10 408 10 698 10 986
C-состояния Включены Включены Включены
Стабильная работа Да Да Да

Разгон Core i5-750 3900 МГц 4000 МГц 4200 МГц
Множитель 20 20 20
Энергопотребление системы в режиме бездействия 78 Вт 79 Вт 125 Вт
Энергопотребление системы под нагрузкой 221 Вт 238 Вт 270 Вт
BIOS Vcore 1,37 В 1,45 В 1,52 В
CPU-Z VT 1,344 В 1,384 В 1,432 В
Cpu VTT 1,203 В 1,25 В 1,303 В
PCH 1,9 Вт 1,9 Вт 1,9 Вт
Память 1,651 В 1,651 В 1,651 В
Результаты теста Fritz Chess 11 266 11 506 12 162
C-состояния Включены Включены Выключены
Стабильная работа Да Да Да

Разгон Core i5-750 4100 МГц 4100 МГц 4300 МГц
Множитель 20 20 20
Энергопотребление системы в режиме бездействия 80 Вт 114 Вт 127 Вт
Энергопотребление системы под нагрузкой 244 Вт 244 Вт 282 Вт
BIOS Vcore 1,465 В 1,463 В 1,55 В
CPU-Z VT 1,384 В 1,384 В 1,456 В
Cpu VTT 1,25 В 1,25 В 1,318 В
PCH 1,9 Вт 1,9 Вт 1,9 Вт
Память 1,651 В 1,651 В 1,651 В
Результаты теста Fritz Chess 11 785 11 842 12 359
C-состояния Включены Выключены Выключены
Стабильная работа Нет Да Нет

Тестовая конфигурация

Системное аппаратное обеспечение
Тесты производительности
Материнская плата (Socket LGA 1156) MSI P55-GD65 (Rev. 1.0), чипсет: Intel P55, BIOS: 1.42 (09/08/2009)
CPU Intel I Intel Core i5-750 (45 нм, 2,66 ГГц, 4 x 256 кбайт L2 и 8 Мбайт L3, TDP 95 Вт, Rev. B1)
CPU Intel II Intel Core i7-870 (45 нм, 2,93 ГГц, 4 x 256 кбайт L2 и 8 Мбайт L3, TDP 95 Вт, Rev. B1)
Память DDR3 (два канала) 2 x 2 Гбайn DDR3-1600 (Corsair CM3X2G1600C9DHX)
2 x 1 Гбайт DDR3-2000 (OCZ OCZ3P2000EB1G)
Кулер Thermalright MUX-120
Видеокарта Zotac Geforce GTX 260², GPU: Geforce GTX 260 (576 МГц), память: 896 Мбайт DDR3 (1998 МГц), потоковые процессоры: 216, частота блока шейдеров: 1242 МГц
Жёсткий диск Western Digital VelociRaptor, 300 Гбайт (WD3000HLFS), 10 000 об/мин, SATA/300, кэш 16 Мбайт
Привод Blu-Ray LG GGW-H20L, SATA/150
Блок питания PC Power & Cooling, Silencer 750EPS12V 750 Вт
Системное ПО и драйверы
Операционная система Windows Vista Enterprise Version 6.0 x64, Service Pack 2 (Build 6000)
Драйверы чипсета Intel Chipset Installation Utility Ver. 9.1.1.1015
Драйверы подсистемы накопителей Intel Matrix Storage Drivers Ver. 8.8.0.1009

Тесты и настройки

3D-игры
Far Cry 2 Version: 1.0.1
Far Cry 2 Benchmark Tool
Video Mode: 1280x800
Direct3D 9
Overall Quality: Medium
Bloom activated
HDR off
Demo: Ranch Small
GTA IV Version: 1.0.3
Video Mode: 1280x1024
- 1280x1024
- Aspect Ratio: Auto
- All options: Medium
- View Distance: 30
- Detail Distance: 100
- Vehicle Density: 100
- Shadow Density: 16
- Definition: On
- Vsync: Off
Ingame Benchmark
Left 4 Dead Version: 1.0.0.5
Video Mode: 1280x800
Game Settings
- Anti Aliasing none
- Filtering Trilinear
- Wait for vertical sync disabled
- Shader Detail Medium
- Effect Detail Medium
- Model/Texture Detail Medium
Demo: THG Demo 1
iTunes Version: 8.1.0.52
Audio CD ("Terminator II" SE), 53 min.
Convert to AAC audio format
Lame MP3 Version 3.98
Audio CD "Terminator II SE", 53 min
convert WAV to MP3 audio format
Command: -b 160 --nores (160 Kbps)
TMPEG 4.6 Version: 4.6.3.268
Video: Terminator 2 SE DVD (720x576, 16:9) 5 Minutes
Audio: Dolby Digital, 48000 Hz, 6-channel, English
Advanced Acoustic Engine MP3 Encoder (160 Kbps, 44.1 KHz)
DivX 6.8.5 Version: 6.8.5
== Main Menu ==
default
== Codec Menu ==
Encoding mode: Insane Quality
Enhanced multithreading
Enabled using SSE4
Quarter-pixel search
== Video Menu ==
Quantization: MPEG-2
XviD 1.2.1 Version: 1.2.1
Other Options / Encoder Menu -
Display encoding status = off
Mainconcept Reference 1.6.1 Version: 1.6.1
MPEG-2 to MPEG-2 (H.264)
MainConcept H.264/AVC Codec
28 sec HDTV 1920x1080 (MPEG-2)
Audio:
MPEG-2 (44.1 kHz, 2-channel, 16-bit, 224 Kbps)
Codec: H.264
Mode: PAL (25 FPS)
Profile: Settings for eight threads
Adobe Premiere Pro CS4 Version: 4.0
WMV 1920x1080 (39 sec)
Export: Adobe Media Encoder
== Video ==
H.264 Blu-ray
1440x1080i 25 High Quality
Encoding Passes: one
Bitrate Mode: VBR
Frame: 1440x1080
Frame Rate: 25
== Audio ==
PCM Audio, 48 kHz, Stereo
Encoding Passes: one
Grisoft AVG Anti Virus 8 Version: 8.5.287
Virus base: 270.12.16/2094
Benchmark
Scan: some compressed ZIP and RAR archives
Winrar 3.9 Version 3.90 x64 BETA 1
Compression = Best
Benchmark: THG-Workload
Winzip 12 Version 12.0 (8252)
WinZIP Commandline Version 3
Compression = Best
Dictionary = 4096KB
Benchmark: THG-Workload
Autodesk 3D Studio Max 2009 Version: 9 x64
Rendering Dragon Image
Resolution: 1920x1280 (frame 1-5)
Adobe Photoshop CS 4 (64-Bit) Version: 11
Filtering a 16MB TIF (15000x7266)
Filters:
Radial Blur (Amount: 10; Method: zoom; Quality: good), Shape Blur (Radius: 46 px; custom shape: Trademark sysmbol), Median (Radius: 1px), Polar Coordinates (Rectangular to Polar)
Adobe Acrobat 9 Professional Version: 9.0.0 (Extended)
== Printing Preferenced Menu ==
Default Settings: Standard
== Adobe PDF Security - Edit Menu ==
Encrypt all documents (128-bit RC4)
Open Password: 123
Permissions Password: 321
Microsoft Powerpoint 2007 Version: 2007 SP2
PPT to PDF
Powerpoint Document (115 Pages)
Adobe PDF-Printer
Deep Fritz 11 Version: 11
Fritz Chess Benchmark Version 4.2
Синтетические тесты
3DMark Vantage Version: 1.02
Options: Performance
Graphics Test 1
Graphics Test 2
CPU Test 1
CPU Test 2
Version: 1.00
PCMark Benchmark
Memories Benchmark
SiSoftware Sandra 2009 Version: 2009 SP3
Processor Arithmetic, Cryptography, Memory Bandwith


Все протестированные нами игры показали впечатляющие преимущества. Особенно хорошо с тактовой частотой масштабируется игра Left 4 Dead. 3DMark Vantage не работает намного быстрее, поскольку этот тест больше зависит от графической производительности.






Производительность приложений тоже значительно улучшается после разгона.








То же самое можно сказать и про тесты кодирования аудио и видео. Более высокая тактовая частота процессоров даёт ощутимый эффект.






Энергопотребление системы практически не меняется, даже если вы увеличите частоту процессора и его напряжение. Функции энергосбережения процессора дают прекрасную эффективность энергопотребления, выключая блоки и ядра, когда они не нужны. Однако нам пришлось отключить поддержку C-состояний для разгона процессора выше 4 ГГц, и этот шаг привёл к заметному влиянию на энергопотребление системы в режиме бездействия.

Разница в энергопотреблении при пиковой загрузке тоже заметна. Энергопотребление практически удваивается при переходе с 2,66 на 4,2 ГГц. Конечно, производительность при этом увеличивается не в два раза, то есть от разгона будет страдать эффективность системы.


Суммарная потреблённая энергия за прогон PCMark Vantage (Вт-ч).



Среднее энергопотребление за прогон PCMark Vantage (мощность, Вт).



Эффективность: результат в баллах на среднее энергопотребление в ваттах.

Как и можно было ожидать, стандартные тактовые частоты с активным режимом Turbo Mode дают наибольшую эффективность (производительность на ватт). Повышение тактовых частот и напряжения старым добрым образом повышает производительность, но ещё сильнее увеличивает энергопотребление. Если вам требуется эффективная машина, то от серьёзного разгона лучше отказаться.


Наши ожидания прироста производительности были высоки, но реалистичны. Архитектура Intel Nehalem сегодня не имеет равных по производительности на такт; мы ожидали, что она будет приятно масштабироваться с добавлением каждого мегагерца к тактовой частоте. Фактически, наша тестовая система на основе материнской платы MSI P55-GD65 обеспечила существенное и почти линейное увеличение производительности вплоть до частоты 4 ГГц, когда нам пришлось выключить внутреннюю систему энергосбережения процессора (C-состояния), чтобы достичь максимальной тактовой частоты. Конечно, мы не рекомендуем идти на такой шаг, если вы хотите сохранить низкое энергопотребление в режиме бездействия.

Зная, что в Интернете есть множество примеров демонстрации частоты 4,5 ГГц и выше, наши результаты кажутся разочаровывающими. Но помните, что мы использовали в данном проекте процессор Intel начального уровня Core i5-750, у которого штатная тактовая частота составляет 2,66 ГГц. Если взять разумный максимум 4 ГГц, то мы всё равно получаем увеличение тактовой частоты на 1,33 ГГц или на 50 процентов. Кроме того, мы не особо заботились о выборе системы охлаждения. Воздушный кулер Thermalright MUX-120 прекрасно себя показал, но жидкостные или более мощные воздушные решения могут дать ещё более высокие пределы разгона.

Core i5-750 - прекрасный процессор для разгона, но всё же не следует слишком увлекаться процессом, чтобы избежать чрезмерного энергопотребления. Да, вы можете получить частоты уровня 4,2 ГГц, схожие со многими платформами LGA 1366, у которых потенциал разгона примерно такой же - и намного дешевле. Но, опять же, мы не можем не отметить, что обычный "грубый" разгон уже не является столь привлекательным, как раньше.

Intel сегодня меняет само понятие разгона, поскольку меняет спецификации процессора с привязки к тактовой частоте на привязку к тепловому пакету. Пока процессор не превышает определённые тепловые и электрические пороги, то он может работать так быстро, насколько это возможно. Фактически, именно на такой модели могут строиться будущие процессоры AMD и Intel. Процессор Core i5 и наш проект разгона наглядно показывают, что статические частоты уже не так интересны. Что на самом деле имеет значение, так это диапазон тактовых частот и тепловые/электрические ограничения, в пределах которых может работать процессор. И разгон в будущем может быть связан с изменением этих ограничений, а не с достижением какой-либо максимальной тактовой частоты.

Мы не знаем, можно ли называть платформу P55 "следующим BX", но процессоры Core i5/i7 для нового интерфейса Intel LGA 1156 имеют высокую практическую ценность независимо от того, будете вы их разгонять или нет.