Доступ в Интернет

Как подключить лазерный диод, схема. Собираем карманный лазер Какое питание нужно для лазерного диода

Сегодня во многих приборах бытового и любого другого плана используются лазерные диоды (полупроводники) для создания целенаправленного луча. И самым важным моментом в самостоятельной сборке лазерной установки является подключение диода.

Лазерный диод

Из этой статьи вы узнаете обо всем, что нужно для качественного подключения лазерного диода.

Особенности полупроводника и его подсоединения

От led диода лазерная модель отличается очень маленькой площадью кристалла. В связи с чем наблюдается значительная концентрация мощности, что приводит к кратковременному превышению значения тока в переходе. Из-за этого такой диод может легко перегореть. Поэтому, чтобы лазерный диод прослужил как можно дольше, необходима специальная схема – драйвер.

Обратите внимание! Любой диод лазерного типа необходимо питать стабилизированным током. Хоте некоторые разновидности, дающие красный свет, ведут себя достаточно стабильно, даже если имеют не стабильное питание.

Красный лазерный диод

Но, даже если используют драйвер, диод нельзя подключать к нему. Здесь необходим еще «датчик тока». В его роли часто выступает общий провод низкоомного резистора, который включается в разрыв между этими деталями. В результате схема имеет один существенный недостаток — минус питания оказывается «оторван» от минуса, имеющегося в питании схемы. Кроме этого данная схема имеет еще один минус — на токоизмерительном резисторе происходит потеря мощности.
Собираясь подключить лазерный диод, необходимо понимать, к какому драйверу его следует подключать.

Классификация драйверов

На данный момент существует два основных типа драйверов, которые можно подключить к нашему полупроводнику:

  • импульсный драйвер. Представляет собой частный случай преобразователя напряжения импульсного характера. Он может быть как понижающим, так и повышающим. У них входная мощность приблизительно равна выходной. При этом имеется незначительное преобразование энергии в тепло. Упрощенная схема импульсного драйвера имеет следующий вид;

Упрощенная схема импульсного драйвера

  • линейный драйвер. На такой драйвер схема обычно подает больше напряжения, чем требует полупроводник. Для его гашения необходим транзистор, который лишнюю энергию будет выделять с теплом. Такой драйвер имеет небольшой КПД, в связи с чем его используют крайне редко.

Обратите внимание! При использовании линейных микросхем-стабилизаторов интегрального плана при падении входного напряжения на диоде ток будет уменьшаться.

Схема линейного драйвера

В связи с тем, что питание любого лазерного диода может осуществляться через два разных типа драйверов, то схема подключения будет различаться.

Особенности соединения

Схема, которая будет использоваться для питания лазерного диода, может содержать в себе не только драйвер и «датчик тока», но и источник питания – аккумулятор или батарею.

Вариант схемы подключения

Обычно аккумулятор/батарея в таком случае должны иметь напряжение в 9 В. Кроме них в схему обязательно должны входить лазерный модуль и токоограничивающий резистор.

Обратите внимание! Чтобы не тратиться на диод, его можно извлечь из DVD привода. При этом это должен быть именно компьютерное устройство, а не стандартный проигрыватель.

Компьютерный DVD-привод

Лазерный полупроводник имеет три вывода (ноги), два из которых размещены по бокам, а один – посредине. Средний выход следует подключать к минусовой клемме выбранного источника питания. Положительную клемму нужно подсоединять к левой или правой «ноге». Выбор левой или правой стороны зависит от производителя полупроводника. Поэтому нужно определить, какой именно вывод будет: «+» и «-». Для этого на полупроводник следует подать питание. Здесь отлично справятся две батарейки, каждая по 1,5 вольт, а также резистор в 5 Ом.
Минусовый вывод у источника питания следует подключить к центральному минусовому выводу, определенного у диода. При этом плюсовая сторона должна подсоединяться к каждой из двух оставшихся клемм полупроводника поочередно. Таким образом его можно подключать и к микроконтроллеру.
Питание для лазерного диода можно осуществить с помощью 2-3 пальчиковых батареек. Но при желании в схему можно включить и аккумулятор от мобильного телефона. В таком случае необходимо помнить, что понадобиться еще дополнительный ограничительный резистор на 20 Ом.

Подсоединение к сети 220 В

Полупроводник можно запитать от 220 В. Но здесь необходимо создать дополнительную защиту от высокочастотных всплесков напряжения.

Вариант схемы питания диода от сети в 220 В

Такая схема должна включать в себя следующие элементы:

  • стабилизатор напряжения;
  • токоограничивающий резистор
  • конденсатор;
  • лазерный диод.

Сопротивление и стабилизатор будут образовывать блок, который сможет препятствовать токовым выбросам. Для предотвращения всплесков напряжения необходим стабилитрон. Конденсатор будет препятствовать появлению высокочастотных всплесков. Если такая схема была правильно собрана, то стабильная работа полупроводника будет гарантирована.

Пошаговая инструкция подсоединения

Самым удобным в плане создания лазерной установки своими руками будет красный полупроводник, имеющий выходную мощность примерно в 200 милливатт.

Обратите внимание! Именно таким полупроводником оснащен любой компьютерный DVD-проигрыватель. Это значительно упрощает поиск источника света.

Подключение выглядит следующим образом:

  • для подключения необходимо использовать один полупроводник. Их обязательно нужно проверить на работоспособность (достаточно просто подключить к батарейке);
  • выбираем более яркую модель. При проверке инфракрасного светодиода (при взятии его из компьютерного проигрывателя), он будет светить слабым красным свечением. Помните, что его

ЗАПРЕЩАЕТСЯ направлять в глаза, иначе можно полностью лишиться зрения;

Проверка диода

  • далее лазер устанавливаем на самодельный радиатор. Чтобы это сделать, нужно просверлить в алюминиевой пластине (толщина примерно 4 мм) отверстие с таким диаметром, чтобы диод входил в него достаточно туго;
  • между лазером и радиатором необходимо нанести небольшой слой термопласты;
  • далее берем проволочный керамический резистор, имеющий сопротивление 20 Ом с мощностью в 5 Вт и соблюдая полярность подключаем его к схеме. Через него нужно подключить лазер и источник питания (мобильный аккумулятор или батарейку);
  • сам лазер следует зашунтовать с помощью керамического конденсатора, имеющего любую емкость;
  • далее отворачивая устройство от себя, следует подключить его к сети питания. В результате должен включить красный луч.

Красный луч от самодельного устройства

После этого его можно сфокусировать при помощи двояковыпуклой линзы. Сфокусируйте его на несколько секунд в одной точке на бумаге, которая поглощает красный спектр. Лазер на ней оставит красный свет.
Как видите, получилось работающее устройство, которое подключено к сети в 220 В. Используя различные схемы и варианты подключения, можно создать разные приспособления, вплоть до карманной лазерной указки.

Заключение

Подключая лазерный диод, необходимо помнить о безопасном обращении с ним, а также знать нюансы, которые присутствуют в его работе. После этого останется только подобрать понравившуюся схему и подключить полупроводник. Главное помните, что все контакты должны быть хорошо запаяны, иначе деталь может перегореть в процессе работы.


Расчет люменов на одного квадратного метра под разные помещения

У многих в детстве были лазерные указки, которые можно было приобрести в игрушечных магазинах. Но с развитием современных технологий появилась возможность создать такой лазер из своими руками. Для этого понадобится всего лишь неисправный DVD привод (важно, чтобы оставался исправным сам светодиод), отвертка и паяльник.

Следует помнить, что для создания лазера лучше использовать нерабочий DVD! Это связано с тем, что после разборки и извлечения светодиода он выходит из строя. Не стоит забывать, что такой лазер из привода намного мощнее обычной указки и может нанести непоправимый вред здоровью, поэтому никогда не нужно направлять луч на человека или животное.

При наведении луча такого устройства на человеческий глаз происходит выжигание сетчатки, и человек может частично или полностью потерять зрение.

Итак, давайте создадим лазер из DVD привода своими руками. Для этого необходимо аккуратно открутить болты на задней части корпуса, чтобы добраться до светодиода будущего лазера. Под крышкой находится узел, который осуществляет привод каретки. Для того чтобы ее извлечь, нужно открутить шурупы и отключить все шлейфы. Затем извлекают каретку.

Теперь необходимо ее разобрать, для чего следует открутить множество шурупов. Далее будут обнаружены два светодиода. Один из них инфракрасный, он отвечает за чтение информации с диска.

Нужен красный, при помощи которого происходит прожиг информации на диск. К красному светодиоду будет прикреплена печатная плата. Для того чтобы ее отключить, необходимо воспользоваться паяльником. Для проверки работоспособности диода достаточно подключить к нему две пальчиковые батареи, но важно учитывать их полярность. Помните, что лазерный диод хрупкий, поэтому с ним необходимо быть очень аккуратным.

Далее нужно приобрести любую лазерную указку. Создавая лазер из DVD привода своими руками, используйте ее в качестве "донора" для корпуса. После покупки необходимо аккуратно раскрутить указку на две части и извлечь из верхней половины Для этого можно воспользоваться ножом. Важно делать все аккуратно, потому что может повредиться диод. При помощи маленькой отвертки выбирают излучатель. Используя термоклей, устанавливают новый светодиод в корпус. А чтобы он прочно установился, можно использовать пассатижи, давя ими на края диода.

Лазер из DVD привода своими руками практически готов. Перед тем как запустить его, необходимо проверить, правильно ли определена полярность. Теперь смело можно подключать питание. После первого запуска может потребоваться настройка фокусировки. Далее можно установить указку в фонарик и подключить батарейки типа АА. Не стоит забывать, что лазер может прожигать различные предметы, поэтому нужно удалить оргстекло из рассеивателя.

Хорошо настроенный привода может не только прожигать бумагу или поджигать спички, но и оставлять след на оргстекле, взрывать шарики (лучше, чтобы они были черного цвета) и оставлять видимые следы на пластмассе. Если установить диод в головку графопостроителя, можно выполнять гравировку по оргстеклу.

Лазерные указки, с которыми многие из нас игрались в детстве, вполне можно сделать своими руками в домашних условиях. А можно создать достаточно мощное приспособление, которое способно прожигать своим лучом предметы. И для этого нам потребуется лазерный диод, который можно извлечь из DVD-RW проигрывателя.

Лазерный диод, взятый из DVD

Из этой статьи вы узнаете последовательность работы создания самодельного лазерного устройства , обладающего значительной мощностью.

Что понадобится в работе

Чтобы своими руками изготовить лазер, необходимо использовать лазерный диод красного цвета (650нм). Его можно извлечь из сломанного или старого DVD-RW привод.

Обратите внимание! Если прибор сломан, то существует высокая вероятность того, что его лазерный диод остался в рабочем состоянии. Поэтому он вполне пригоден для нашей работы.

Также можно использовать CD-RW привод. Некоторые используют даже пишущий Blu-ray дисковод. Но в таком случае для CD-RW привода будет характерен инфракрасный невидимый луч (780нм), а для Blu-ray дисковода - фиолетовый (405нм).
Кроме того понадобятся также инструменты, чтобы для разбора DVD-RW привода.

Поговорим о проигрывателе

Чтобы достать лазерный диод, взятый из DVD-RW привода, нужно аккуратно разобрать устройство. Для этого нужно понимать устройства привода. Он помещен в специальную металлический теплоотводящий корпус, который еще дополнительно помещен ещё в одну металлическую основу. От вас зависит, стоит ли вытаскивать прибор из такого корпуса или нет.

Обратите внимание! Разбирая DVD-RW прибор, не стоит вытаскивать бескорпусные лд.


DVD-RW привод

Можно также оставить в корпусе радиатор, а вот основы извлечь. Это влияет на качество теплоотвода, который необходим для нашей лазерной установки. Некоторые специалисты утверждают, что когда лд питает неимпульсный ток, то для каретки не будет хватать созданного теплоотвода. Это утверждение будет правильным для определенных моделей привода, а также, если необходимо получить максимальную мощность.
В DVD-RW встроены два лазерных диода. Из них один является инфракрасным и используется для записи и проигрывания CD. А второй красного цвета и применяется проигрывания и записи DVD. Как видим, при желании можно изготовить своими руками целых два лазера.

Обратите внимание! В модели привода BD-RE встроены целых три диода. А вот в современных моделях такого рода устройств применяются сдвоенные лд, установленные на одном кристалле.

В таких сборках нельзя одновременно подключать инфракрасный и красный диоды, если ток имеет большие значения.

О чем стоит помнить при работе

Создавая своими руками лазер необходимо помнить, что лазерный диод может повредиться от статического электричества. Поэтому, чтобы обеспечить нормальную работу данного элемента, необходимо три ножки лд
обмотать неизолированной проволокой.

Обратите внимание! Нельзя направлять в глаза лазерный луч . Его также нельзя направлять на отражающие поверхности. Это может привести к полной или частичной потере зрения.

Требования, которые существуют для работы с лазерами, актуальны и для инфракрасного излучения. Ведь оба эти излучения обладают мощной прожигающей способностью.


Лазерный луч красного цвета

Кроме этого необходимо знать о том, что питание лазерного диода должно осуществляться определенным током. Если ток питания будет превышать определенный порог, то это может привести к перегреву диода. В связи с чем он либо полностью перегорит, либо будет светить как стандартный светодиод.
Для того, чтобы ток имел правильные значения, нужно использовать определенную схему сборки лазера. При этом в ней обязательно должен иметься драйвер. Рассмотрим несколько схем по сборке лазера при использовании лазерного диода, взятого из DVD-RW привода.

Первый вариант сборки

В данной ситуации необходимо использовать следующую схему сборки устройства на основе лазерного диода, извлеченного из DVD-RW привода.


Схема сборки

Минусом такой схемы является наличие ситуации проседания напряжения аккумулятора в момент разрядки, что вызывает линейное падение степени яркости лазера.
Чтобы собрать лазерную установку по приведенной схеме, нужен не только диод, но и конденсаторы с любым напряжением (от 3В). На схеме они отмечен значком C1 и С2. Емкость первого конденсатора должна быть 0,1 мкФ, а второго – 100 мкФ. Они защитят диод от статического электричества, а также обеспечат плавный переход процессов. Когда конденсаторы были подсоединены к лазерному источнику света, с выводом можно будет снять проволоку. При соединении к диоду один из выводов на корпус будет подавать минус. В тоже время второй вывод будет плюсом, а третий – не применяется. Расположение плюсов достаточно хорошо показано на второй схеме, которая будет описана ниже.
Стоит знать, что на корпус некоторых диодов подается плюс (например, у 808нм лд). Для сдвоенных моделей характерно наличие среднего вывода для общего минуса (G), а крайний – C для питания DVD, CD, D.
Запитать такую схему можно от мобильного аккумулятора или 3 аккумулятора АА.

Обратите внимание! При сборке схемы необходимо учитывать, что напряжение аккумулятора может отличаться от указанного. Особенно это заметно сразу же после его зарядки. При 3,7 В может иметься 4,2 В. В связи с этим аккумулятор необходимо проверять мультиметром.

При этом ток также может иметь отличные значения. К примеру, при соответствующих скоростях записи DVD-RW привода, лазерный диод может иметь следующие значения таких параметров, как мощность и ток:

  • при скорости 16 мощность составит 200мВт, а ток - 250-260мА;
  • при скорости 18 мощность составит 200мВт, а ток - 300-350мА;
  • при скорости 20 мощность составит 270мВт, а ток - 400-450мА;
  • при скорости 22 мощность составит 300мВт, а ток - 450-500мА;
  • при скорости 24 мощность составит 300мВт, а ток - 450-500мА.


Инфракрасный диод

Инфракрасный диод CD-RW привода будет иметь мощность в 100-200мВт. Для сравнения, фиолетовый в BLU-RAY RW - от 60 до 150мВт, а в не пишущих моделях -15 мВт.
Перед сборкой данной схемы, при использовании лазерного диода DVD привода, необходимо узнать, какое сопротивление требуется для резистора R1. Для этого можно использовать формулу R1=(Uвх.-Uпад.)/I , в которой:

  • Uвх. – напряжение, идущее от аккумулятора;
  • Uпад. - падение напряжения, которое принимает диод. Красный диод должен примерно иметь Uпад. равное 3 В. Такое напряжение пойдет для маломощного не пишущего DVD привода. Для инфракрасного диода Uпад. составит примерно 1,9 В, а для фиолетового или синего – 5,5 В и 4-4,4 В соответственно;
  • I - сила тока. Ее можно узнать из специальной таблицы.

При сборке лазера многие специалисты рекомендуют использовать резисторы большего сопротивления , чем получилось при расчетах. Это позволит защитить полупроводник от тока чрезмерного значения. Используя мультиметр, далее можно будет уменьшить сопротивление.

Второй вариант сборки

В данном случае при сборке лазерной установки необходимо руководствоваться следующей схемой.


Схема сборки лазерной установки

Данная схема, в отличие от вышеописанной не имеет проблем с падением яркости лазера. Эта проблема была решена благодаря применению в схеме
специального регулируемого стабилизатора (например, КРЕН12А или его распространенного аналога LM317T).
При этом необходимо знать, что выбранный стабилизатор является компенсационным. Он подает напряжение примерно на 1.4 В больше, чем требуется. В результате, чтобы получить в схеме на лазерный диод 3 В нужно подать от 4.4 В до 37 В. При этом на выходе все равно будет 3 В (конечно, при условии правильно подобранных резисторов).
Если на схему подавать меньше 4.4 В, то яркость лазера начнет падать, что характерно для первой схемы. В результате возникнет ситуация, аналогичная разрядке аккумулятора. Для диодов 780нм на схему потребуется подавать от 3,8 В до 37 В. Поэтому в такой ситуации данная схема может оказаться неэффективной, так как вольт-амперная характеристика здесь будет сильно плавать в зависимости от температуры окружающей среды . А это может привести к перегоранию схемы, если повышение значения тока вовремя не удаётся отследить.

Обратите внимание! Некоторые специалисты считают, что данный эффект характерен для синих лазерных диодов.

Чтобы избежать перегрева, необходимо до полного разогрева источника света измерять ток. Это позволить устранить риск повышения предельно допустимого значения тока.
Специалисты рекомендуют использовать сопротивление для R1 в значении Ом. А для определения параметра R2 необходимо использовать следующую формулу: R2=R1*(Uвых.-Uопор.)/Uопор.
Следует знать, что первоначально R2 нужно ставить несколько меньше, чем было получена цифра при вычислениях. При этом следует одновременно к диоду подключить последовательно мультиметр, чтобы оценивать силу тока. Это позволит избежать ситуации появления тока чрезмерного значения.
В этой схеме допускается использование таких же конденсаторов, как и в предыдущей. А вот резисторы должны быть более качественными, особенно их подключение. Если во время работы установки произойдет обрыв контакта (размыкание цепи), то из-за возросшего напряжения светодиодный диод перегорит.

Фокусировка светового потока в луч

Создавая лазерную установку и используя для этого диод, извлеченный из DVD-RW привода, необходимо понимать, что испускаемый свет будет аналогичным стандартному светодиоду.


Свечение светодиода

Но нам же необходим лазерный луч. Чтобы его сделать, необходимо использовать коллиматор – специальную линзу. С ее помощью будет происходить фокусирование светового потока в луч. Отличным решением будет применение в устройстве линзы, взятой из старой лазерной указки. Устанавливая ее при помощи гаек и пружин, появится возможность более точной фокусировки лазера (его приближение и удаление). Также линзу можно прикрепить к лазерному диоду с помощью эпоксидного клея или двухстороннего скотча.
Из-за того, что не всегда можно отыскать мощный диод, в данной ситуации рекомендуется использовать модель 808нм.


Получение зеленого луча

С помощью кристалла определенного цвета можно получить лазерный луч зеленого, желтого, красного и синего цвета.

Заключение

С помощью лазерного диода, извлеченного из DVD-RW привода, можно своими руками создать лазерную установку. Используя различные кристаллы, можно сфокусировать луч и придать ему необходимую расцветку. При этом необходимо обязательно учитывать особенности работы с таким приспособлением, чтобы получить желаемый результат и не ухудшить свое зрение.

Рекомендуемые статьи по темеКак собрать блок питания с регуляторами своими руками Обзор устройства беспроводных уличных светильников с датчиками движения Почему стоит обратить внимание на микроволновые датчики движения

Наверно у всех еще с детства была мечта иметь свой собственный мощный лазер , способный прожигать стальные листы, теперь мы можем на шаг приблизиться к мечте! листы стали резать не будет, а вот пакеты, бумагу, пластмассу легко!
Для нашего лазера нам понадобится во первых сломанный или не очень резак! причем DVD-RW . чем выше скорость записи DVD-R, тем мощнее там стоит лазер! в 16х приводах стоят 200мВт красные лазеры, а также лазер ИК диапазона, но о нем позже.

Разбираем резак ,
вытаскиваем оптическую часть.Вот так выглядит эта часть резака:



ценного там только выходная линза и два лазера.

Теперь достаем самое главное!

А теперь техника безопасности для вас и для лазера!

лазер из DVD-RW относится к классу 3B, а значит опасен для зрения! не направляйте луч в глаза! даже глазом моргнуть не успеете, как потеряете зрение! парнишка на одном форуме засветил себе нечаянно, попал на несколько тысяч уёв. это ему считай повезло. сфокусированным лучом ослепить можно и со ста метров! смотрите куда светите!

Как можно испортить ЛД?
Да очень просто! стоит превысить ток и ему конец! причем доли микросекунд будет достаточно!
именно поэтому ЛД боятся статического электричества. Оберегайте ЛД от него!
на смом деле ЛД не сгорает, просто рушится оптический резонатор внутри и ЛД превращается в
обычный светодиод. резонатор рушится не от тока, а от световой интенсивности, которая в свою
очередь от тока и зависит. Также надо быть внимательным к температуре. при охлаждении лазера
КПД его растет и при том же токе интенсивность возрастает и может разрушить резонатор! Осторожнее!
Еще его легко убить переходными процессами, возникающими при включении и выключении! от
них стоит защититься.

Теперь продолжим разбирать привод))
Достаем лазер и его радиатор, сразу же припаеваем к его ногам небольшой
неполярный конденсатор на 0,1мкФ и полярный побольше! так мы спасем
его от статики и переходных процессов, которые ЛД очень не любят!
Теперь время подумать о питании нашего лазера.ЛД питается примерно
от 3V и потребляет 200мА. Лазер это не лампочка!! никогда не соединяйте
его напрямую к батарейкам! без ограничительного резистора его убьют и
2 батарейки от лазерной указки!! ЛД нелинейный элемент, поэтому питать его
надо не напряжением, а током! то есть нужны токо ограничивающие элементы.
рассмотрим три схемы питания ЛД от простейшей, к наиболее сложной.
Все схемы питаются от аккумуляторов.
1 вариант
ограничение тока резистором. см рисунок


сопротивление резистора определяется экспериментально, по току через ЛД.
стоит остановиться на 200мА, дальше риск спалить больше.
хотя мой ЛД и на 300мА работал прекрасно. для питания подойдут три любых
аккумулятора на нужную емкость. также удобно использовать аккумулятор от
мобильного телефона(любого).


Пробный запуск

Подключив питание, видим потребление 200мА и пучок яркого света.



В темноте работает как фонарик.


Линза для фокуссировки

Луч получился совсем не «лазерный». Нужна линза для регулировки фокусного расстояния. Для начала вполне подойдет линза из того же привода.




Через линзу получается сфокусировать луч, но без жесткого корпуса занятие утомительное.


Изготовление корпуса

В Интернете встречал описание, где люди использовали лазерные указки или фонарик в качестве корпуса. Тем более что и линзы там уже есть. Но, во-первых, у нас не оказалось под рукой лазерной указки нужного размера. А, во-вторых, это увеличило бы бюджет мероприятия. А я уже говорил, что лично у меня это уменьшает удовольствие от полученного результата.
Мы начали пилить алюминиевый профиль.






Обязательно нужно все изолировать.


Линза

Линзу прикрепили на пластилин для регулировки ее положения.





Кстати, эта линза работает лучше, если ее перевернуть выпуклой частью к лазерному диоду.



Регулируем и получаем более-менее собранный луч.




Точно отрегулировать, наверное, можно, но нам и этого хватило, чтобы черный пластик начал плавиться.



Спичка мгновенно загоралась.





Черная изолента разрезалась как ножом по маслу.





Из этого лазера получилась бы отличная пушка для игры в солдатики.





Видео

На видео видна скорость воздействия лазера на некоторые материалы (белый лист, надпись маркером на бумаге, черный пластик и черная изолента, нитка, пластилин).

DVD ЛАЗЕР "ДЫМОК"

Многие занимаются изготовлением всяких ненужных, но прикольных девайсов, не стал исключением и я. Решил по примеру многих сделать лазер из DVD - прожигающего диода, выдранного из нерабочего ДВД-пишущего привода. Итак, просим своего радиокота помочь раскрутить компьютер:


Потом снимаем крышку привода и вытаскиваем планку, на которой установлен л азер из DVD.


Для подключения его к аккумулятору, можно использовать специализированную со стабилизацией тока. Но эти микросхемы стоят 5-10$, а сгорают при неправильной наладке в момент! К тому-же их не везде достанешь. Поэтому решено было сделать свою схему питания, как оказалось прекрасно работающую, ещё и вместе с зарядным устройством от 220В.


Аккумулятор: никель-кадмиевые пальчики 3 шт или литий-ионник от мобильника. Итак приступаем, берём из дивидишника диод-


Говорят они боятся статики, но я никаких мер по защите не принимал и всё равно не сгорели. А вот когда поднимал ток свыше 0.3А - вылетали в момент. Четыре штуки спалил! Запихиваем весь этот лазер из DVD в какой-нибудь подходящий корпус, например китайский фонарик,



Линзу для фокусировки я сначала взял от того-же ДВД привода , но как оказалось с ней работает лазер плохо - фокусировка ни к чёрту. Пришлось идти на базар и тратить доллар на покупку лазерной указки. Вот её линза просто супер - фокусирует в точку .


И к тому же удобно крепится! В качестве бонуса, имеем три пуговичных 1,5в батарейки, кнопку и очень яркий красный светодиод. Спереди фонарика, вместо стекла ставим круглый кусок пластмассы с отверстием 10 мм для луча. Вот и всё, боевой лазер из DVD "дымок" готов!


Поджигает спички за 1 метр, заставляет хорошо дымиться дерево, резину, пластмассу, чёрную бумагу. Ток потребления - до 0.3А, но рекомендую не устанавливать предельный, а снизить до безопасных 0.2А. Ещё будет лучше, если питать его от со сверхнизким падением напряжения - 0.05В.

По всем вопросам пишите на

В разделе есть вакантные места для фотографий Ваших лазеров и других девайсов!

Небольшой обзор лазерного модуля на 1,5 китайских ватта, но при этом дешевого.
Подойдет для установки на 3Д принтер любого типа, а также для самодельных конструкций

Установка элементарная: лазерный модуль устанавливается на печатную головку стяжками и подключается вместо вентилятора обдува.
Прошивку корректировать не требуется. Можно печатать с флешки.

Более подробная информация под катом

Приветствую! И сразу к делу))))

Давно хотел получить лазерный гравер с большой рабочей областью. Ну как большой - больше чем 3.5 на 3.5 мм (Neje, KKmoon и подобные Decaker). У данных китайских поделок ультрадешевой конструкции используется механика от старых компьютерных приводов, и соответственно отсутствует возможность модернизации.

Самое простое что может прийти в голову - это установка лазерного модуля на головку 3д принтера. Есть варианты для установки совместно с существующим хотэндом (), можно установить новую Х-каретку (держатель эффектора для косселя) вместо штатного.


Варианты питания драйвера лазерного модуля различные - можно питать от проводов нагревателя хотэнда, сигнал TTL при этом берется от вентилятора обдува модели. Если с минимальной переделкой - можно просто установить вместе с хотэндом, запитать от вентилятора (выставив его на 100%). Далее, фокусируем линзой в точку, вручную опускаем эффектор к столу (поднимаем стол к лазеру и т.п.), определяя высоту, в которой лазерный луч фокусируется в точку. Эта высота будет постоянная для последующей «печати», с поправкой на высоту материала. В указанном варианте не потребуется перепрошивка - все остается как есть и можно пользоваться принтером как принтером, только для гравера готовить G-code файлы через плагин.

Кстати, как вариант - можно собрать . Самый простой способ - использовать несколько отрезков конструкционного профиля, ролики, ремни. Вот есть , а вот тут - про для сборки кареток.
В качестве простейшей платы управления можно использовать Arduino Uno/Nano + CNC Shield, есть возможность купить оригинальную плату EleksMaker для совместимости с программным обеспечением типа Benbox (и по сути за недорого получить недорогую копию китайского гравера), а также ничто не мешает установить Arduino Mega+Ramps, и пользоваться работой с SD карты и управлением (дисплей+энкодер).
Все указанные компоненты недорогие и доступные.

В любом случае, самое главное - это найти и правильно подключить лазерный модуль.


Про мощные лазерные модули уже была речь на муське ( , и даже была статья про лазерный гравер ), при покупке обратите внимание, чтобы была возможность управления по TTL мощностью (либо купите отдельный драйвер с TTL для лазерного диода/модуля)
И имейте в виду, что в названии лазерного модуля, как правило, указывается желаемая китайцами мощность, достижимая только при 100% мощности. Средняя/рекомендуемая мощность обычно колеблется на уровне 50-60% от максимума. То есть, если вы отдали около $300 за модуль с 5500мВт, то у вас скорее всего будет около 3...3,5Вт для работы. При длительной работе на максимуме мощности китайские диоды быстро теряют свой ресурс (и дохнут).

Оставим мощные диодные модули для других публикаций, а вот про их дешевые аналоги пока не было публикаций на муське. Вообще, цель была до $25 получить недорогой модуль, но при этом способный гравировать на дереве/картоне и возможно даже резать тонкие материалы.
Сразу укажу варианты, которые попались мне на глаза.

Во-первых, всегда есть возможность разломать/попросить на запчасти старый DVD-RW привод, и изъять лазер. Обычно говорят искать со скоростями >16х, так как там используются лазеры чуть мощнее.
Это практически бесплатный вариант, подходящий, чтобы попробовать свои силы и посмотреть, что получится. Кстати, если разломать пару приводов, вы еще и получите механику для двух осей))))
Вот есть информация по подобному способу, разбирайте аккуратно, не повредите модуль, который боится статики.
Лазер из привода, как правило, способен гравировать картон и дерево. Для любителей - можно лопать шарики, зажигать спички. Питается от 1*3,7В аккумулятора либо от 5В (павербанк)

Во-вторых, можно купить совсем недорогие лазерные диоды, обычно продаются по несколько штук. Вот пример лазерными диодами с длиной волны 808nm излучения.
На корпусе три вывода, но используются два (минус на корпусе, слева - плюс).
Как для первого случая (лазер или DVD-RW привода), так и для второго - потребуется докупить корпус, линзу, а также для питания диода.

Есть хороший третий способ : это покупка недорогого модуля лазерного диода, в гильзе, с линзой.
Вот варианты на , на , на .
Они продаются, как сменные варианты (для апгрейда или ремонта) лазеров типа Neje/Kkmoon


Выглядят как гильза диаметром 12мм, высотой 45мм, с двумя контактами для питания диода. Модуль поставляется без драйвера и соответственно, потребуется спаять или купить драйвер. . В привел фото разобранного лазерного модуля


Так что, модуль поставляется с драйвером внутри, драйвер питается от напряжения 4.5В....5В., максимальная потребляемая мощность 1,5Вт (излучаемая соответственно меньше). TTL у данного драйвера нет. Есть два варианта управления - либо M106 S255 (MAX) затем M106 S0 (MIN), либо включением - выключением питания, что одно и тоже по сути. Второй вариант - заменить «родной» драйвер.

Несколько слов про драйверы. Питать лазерный диод требуется не напряжением, а током, в зависимости от тока он и будет сильнее или слабее излучать.
Вот простейшая схема питания для лазерных диодов из приводов.


Очень важен резистор, который подбирается последовательно диоду - он ограничивает ток на диоде.

Итак, взял на попробовать вот
Далее фото посылки и лазера. Пришло достаточно быстро после оплаты, примерно дней за 20. В декларации ни слова про лазеры (аксессуары)


Внутри посылки пакет с лазером, небольшой и легкий


Масса модуля всего 17-18 грамм


Размеры: диаметр 12мм…


… длина 45 мм


Кольцо с линзой можно выкрутить совсем. Вот на фото хорошо видно линзу и пружинку.


Если посмотреть в лазерный модуль со снятой линзой, то… мало чего можно увидеть. Только чип в корпусе.


Фото поближе


На обратной стороне провода зафиксированы термоклеем


Теперь фото дополнительных комплектующих для сборки.
Для первичной проверки был куплен драйвер на 300мА


и




Фотография лазера с радиатором


И они же в сборе


Общая масса сборки 65 грамм - это важно для подвижный частей будущей системы


Сравнение лазера на 1500 мВт с лазерным модулем на 300мВт


Для сравнения - диоды 300mW 808nm и радиатор для них

Параллельно проводил эксперименты с лотом
диоды

корпус с линзой






вот так выглядит диод, установленный в корпус


и сам диод


собранный радиатор с линзой


Итак, самый простой драйвер я приобрел просто для контроля работоспособности лазера. Он умеет питать лазер до 300мА (читай милливат 600....700), но полностью не раскрывает возможностей лазерного модуля.
Подойдет для питания самодельных лазерный модулей из DVD-RW. Если вы будете питать диоды из лазера или купленные 300мВт диоды, то нужно предварительно выставить минимальный ток питания.

Для начала скручиваем переменный резистор в минимальное положение (против часовой стрелки), подключаем вместо лазера резистор на 50...80 Ом и устанавливаем ток около 50мА.
Обязательно оставляйте в цепи мультиметр в режиме измерения тока. Потом будем также с лазером включать с мультиметром и контролировать.

Что касается лазерного модуля 1500мВт из обзора - то он идет уже с установленным драйвером, питать можно до 5В. Я сначала перестраховался и подал чуть меньше напряжение. На фото видно, что лазерный модуль начинает зажигаться и можно попробовать фокусировать его в точку


Итак, проверка пройдена.
Я использовал модуль DPS5005 для питания лазерного модуля и контроля тока/напряжения


Уже можно гравировать дерево, единственно - нужно подержать какое то время
Вот фото пробы с рук






Далее, можно выставить напряжение на рекомендуемые 4,5....5В


Ну и традиционно - спички зажигает, шарики лопает, останавливаться на этом не буду

Для дальнейших экспериментов использовал принтер Geeetech Me Creator со снятым экструдером. Был нарисован новый держатель на каретку, питание лазера было заведено отдельно.

3Д модель держателя на каретку


Скрин из слайсера 3д принтера


Внешний вид лазера, установленного на Х-каретку




Вид сверху.


Фото в процессе работы. Тяжело фотоаппаратом поймать точку - в специальных очках точка очень маленькая, порядка 0,1мм. Без защитных очков лучше на нее не смотреть.


Печатал штатно с SD-карты, без модификации прошивки


Простейший G-code по координатам был запущен с SD карты, чтобы проверить работоспособность идеи.




Узнать более подробно, что может 1,5Ваттный китайский лазер

Для подготовки изображений к гравировке рекомендую использовать
Вот меню плагина. В Z-offset пишите высоту на которой фокусируется ваш лазер. Управление идет командами M106/M107 через регулировку оборотов вентилятора.

Итак, данный лазерный модуль один из самых дешевых, и позволяет уложиться в $20.
Для того, чтобы раскрыть все возможности лазерного модуля, заказал токовый драйвер до 1500мВт и с TTL. Когда придет - разберу корпус модуля, хочу подключить в обход родного драйвера.

Ну и я хочу нарисовать новую каретку, чтобы одновременно был установлен экструдер и лазер.
А то не очень удобно перекидывать их.

В целом все. Идея интересная, хорошая, надеюсь многим подойдет, хотя бы попробовать свои силы.
Обзор понравился +51 +78

Под термином «лазерный диод » понимается лазер полупроводникового типа, основа конструкции которого представлена диодом. Принцип работы такого лазера строится на том, что после того, как в диод были инжектированы носители заряда в зоне p-n — перехода возникает инверсия населённостей.

Принцип работы лазерного диода

Всегда необходимо помнить, что при формировании излучения больше важен не ток лазерного диода, а напряжение. В момент подачи на анодный конец диода положительного потенциала, наблюдается смещение диода по прямому направлению. Это подразумевает инжекцию дырок из p-области в n-область и аналогичную инжекцию электронов в обратном направлении. Расположение электрона и дырки в достаточной близости для проявления эффекта туннелирования делает возможной их рекомбинацию. Данное действие сопровождается образованием:

  • Фотонов, имеющих определённую длину волны (результат принципа сохранения энергии);
  • Фононов (компенсируют забираемые фотонами импульсы).

Явление носит название спонтанного излучения и применительно к светодиодам считается главным методом создания излучения.

Рис 1 Конструкция лазерного диода.

Если рекомбинирование электрона и дырки, несмотря на общую пространственную область, не происходит весьма долго. Пересечение этой области фотоном с резонансной частотой провоцирует процесс вынужденной рекомбинации, результатом которой становится формирование другого фотона, полностью совпадающего с первым по всем значимым параметрам.

Особенности конструкции

Кристалл полупроводника лазерного диода представляет собой весьма тонкую прямоугольную пластинку. Деление на p и n области здесь происходит по принципу не лево-право, а верх-низ. То есть, вверху расположена p-область, а внизу — n-область.

Как результат: площадь p-n — перехода достаточно велика. Для торцевых (боковых) сторон обязательна полировка, поскольку формирование оптического резонатора (Фабри-Перо) требуются наличие параллельных плоскостей абсолютной гладкости. Перпендикулярно направленный в отношении одной из таких плоскостей случайный фотон (сформированный спонтанным излучением) будет двигаться по всему оптическому волноводу, периодически отражаясь от боковых граней, пока наконец не покинет резонатор.

Во время движения этот фотон станет причиной нескольких актов вынужденной рекомбинации, формирования подобных фотонов и усиления излучения. В момент, когда усиление достаточно для перекрытия потерь, происходит лазерная генерация.

Разновидности лазерных диодов

  • P-n гомоструктурный диод.

В большинстве случаев слой лазерного диода весьма тонок и генерация фотонового потока происходит параллельно структуре этого слоя. Однако, при конструкции достаточной ширины, диод может функционировать в поперечном варианте. Это многомодовые диоды, и их использование демонстрирует высокую мощность излучения в комбинации с высокой его расходимостью.

С целью обеспечения лучшей фокусировки по ширине волновод должен сопоставляться с длиной волны излучения.

Ввиду малой толщины излучающего элемента и дифракции наблюдается сильное расхождение луча в момент выхода. Компенсировать данный эффект можно при помощи собирающих линз. В случае с многомодовыми лазерами обычно используют линзы цилиндрического типа. А если для стандартного лазера применить симметричные линзы, то луч в сечении приобретёт форму эллипса поскольку в вертикальном направлении луч расходится сильнее, чем в горизонтальном.

Лазерный диоды данного типа не отличаются эффективностью. Для их работы применяется большая входная мощность и импульсное воздействие (позволяющее избежать перегрева). В производстве они практически не используются.

  • Лазерный диод с двойной гетероструктурой (ДГС).

Особенностью диодов данного типа является то, что в них кристаллический слой, имеющий более узкую запрещённую зону, фиксируется между двух кристаллических слоёв, имеющих более широкую запрещённую зону.

Большим плюсом моделей данного типа является увеличение активной области (распространяющуюся практически на весь средний слой) и усиление потока фотонов (благодаря дополнительному отражению света от гетеропереходов).

  • Лазерный диод с квантовыми ямами.

При более сильном истончении среднего слоя в диодах ДГС-типа, его свойства изменяются таким образом, что он превращается в квантовую яму. Таким образом по вертикали электронная энергия будет подвергаться квантованию.

Рис 2 Лазерный диод — вид разрезе

Разность энергетических уровней квантовых ям может быть использована излучения взамен возможного барьера. Это позволяет регулировать длину волны при излучении, определяемую толщиной среднего слоя. Более эффективный вариант ввиду равномерности распределения электронов и дырок.

  • Лазерный диод с гетероструктурой и раздельным удержанием

Гетероструктурные лазеры с тонким слоем имеют один весомый недостаток — они не в состоянии эффективно удерживать свет. Для разрешения проблемы к двум сторонам кристалла крепится по дополнительному слою. По коэффициенту преломления эти слои уступают центральным. Общая конструкция при этом становится подобна световоду. Наибольший процент лазерных диодов сформирован по данной технологии.

  • Лазерные диоды с распределением обратной связи (РОС).

Лазеры РОС-типа применяются для многочастотных волоконно-оптических связей. При помощи поперечной насечки в области p-n — перехода, необходимой для формирования дифракционной решётки, становится возможной стабилизация длины волны. Конкретное её значение зависит от параметров насечки, однако возможны некоторые деформации под действием температурных всплесков. Лазеры данного типа применяются преимущественно для телекоммуникаций и оптики.

  • VCSEL

Лазер поверхностного излучения, снабжённый вертикальным резонатором. Это означает, что свет будет направлен перпендикулярно относительно грани кристалла, в то время как лазеры других типов излучают свет параллельно кристаллу.

  • VECSEL

Аналогичен по свойствам предыдущему варианту, но оснащён внешним резонатором.

Драйвер для лазерного диода

Выходная оптическая мощность лазерного диода (являющая одной из основных оптических характеристик) находится в зависимости от тока, проходящего по p-n — переходу. Ввиду этого драйвер лазерного диода обязательно должен соотноситься с источником тока. Все характеристики относящиеся к источнику тока отражаются на параметрах оптической мощности.

В сферу «обязанностей» драйвера входит не только регулировка мощности, но и терморегуляция, осуществляемая через охладитель. Конструкция управляющего блока при этом может быть как совмещённой, так и раздельной.

Рис з Схема простейшего драйвера лазерного диода

Как подключить лазерный диод

Питать лазерный диод можно при помощи:

  1. Батарей;
  2. Аккумуляторных источников питания;
  3. Стационарных сетей на 220 В (при соответствующей защите от перепадов тока и напряжения).

Подключение лазерного диода к сети на 220 вольт опасно выбросами напряжения и высокочастотными всплесками. Чтобы обеспечить в защиту при данном варианте, потребуется конструкция, включающая в себя:

  • Стабилизатор напряжения;
  • Конденсатор;
  • Токоограничивающие резисторы;
  • Лазерный диод.

При использовании всех приведённых компонентов можно гарантировать безопасность эксплуатации диода.

Рис 4 Одно из подключений лазерного диода

Излучение с какой длиной волны может производить лазерный диод?

Единица измерения длины волны, которую может продуцировать лазерный диод — нм , иначе «нанометры». Благодаря этому значению можно определить цветовой спектр испускаемого светового луча:

  • 650 нанометров

Поток фотонов красного цвета наиболее часто используется в конструкциях дисководов. При дневном свете луч этого лазера виден не очень хорошо, но причина этому только невосприимчивость человеческого зрения. При мощности от 20-50 мВт и фокусировки светового пятна в минимально возможную по площади точку проявляется эффект «жжения». Мощность на 200 мВт при правильной фокусировке позволяет резать бумагу различной плотности.

  • 532 нанометра.

Зелёный поток. Лазеры данного типа очень хрупки и чувствительны к температурным всплескам, требуют крайне осторожного обращения. К тому же обладают сложным устройством и до недавнего времени были крайне дорогими.

Главный положительный момент их применения: зрительно излучение на 532 нм наиболее хорошо различимо. Поэтому использовать лазер зелёного цвета мощнее, чем на 5мВт будет небезопасно для зрения. Кроме того, в силу особенностей конструкции вместе с зелёным спектром лазер поставляет и инфракрасный с длиной волны на 808 нм и 1064 нм, а это только повышает травмоопасность такого прибора. Правда в более дорогих экземплярах стоят специальные фильтры, но это обязательно нужно проверять.

  • 405 нанометров.

Фиолетовое излучение. Опасно тем, что слабо различимо для человеческого глаза и кажется слабым по мощности, хотя на деле ситуация строго противоположная. Его трудно сфокусировать. В общем, в целях эксплуатации не самый удобный вариант. Может быть актуален разве что при работе с фоторезисторами.

  • 780 нанометров.

Инфракрасное излучение. Опасно в силу того, что не воспринимается человеческим зрением от слова совсем. А это грозит различными травмами зрения. Работа возможна только при отсутствии инфракрасного фильтра, что обеспечит хотя бы относительную видимость луча.

  • 10 микрометров.

Излучение также инфракрасное с надбавкой CO2. Наиболее широко применяется в промышленности. Подобные лазеры имеют низкую стоимость, высокую мощность и отличаются высоким КПД. Используются данные лазерные диоды для резки металла или фанеры. С их помощью выполняется гравировка.

Сделать мощный прожигающий лазер своими руками – несложная задача, однако, кроме умения пользоваться паяльником, потребуется внимательность и аккуратность подхода. Сразу стоит отметить, что глубокие познания из области электротехники здесь не нужны, а смастерить устройство можно даже в домашних условиях. Главное при работе – это соблюдение мер предосторожности, так как воздействие лазерного луча губительно для глаз и кожи.

Лазер – опасная игрушка, которая может нанести вред здоровью при его неаккуратном использовании. Запрещается направлять лазер на людей и животных!

Что потребуется?

Любой лазер можно разбить на несколько составляющих:

  • излучатель светового потока;
  • оптика;
  • источник питания;
  • стабилизатор питания по току (драйвер).

Чтобы сделать мощный самодельный лазер, потребуется рассмотреть все эти составляющие по отдельности. Наиболее практичным и простым в сборке является лазер на основе лазерного диода, его и рассмотрим в данной статье.

Откуда взять диод для лазера?

Рабочий орган любого лазера – это лазерный диод. Его можно купить почти в любом магазине радиотехнике, либо достать из нерабочего привода для компакт-дисков. Дело в том, что неработоспособность привода редко связана с выходом из строя лазерного диода. Имея в наличии сломанный привод можно без лишних затрат достать нужный элемент. Но нужно учесть, что его тип и свойства зависят от модификации привода.

Самый слабый лазер, работающий в инфракрасном диапазоне, установлен в CD-ROM дисководах. Его мощности хватает только для считывания CD дисков, а луч почти невидим и не способен прожигать предметы. В CD-RW встроен более мощный лазерный диод, пригодный для прожига и рассчитанный на ту же длину волны. Он считается наиболее опасным, так как излучает луч в невидимой для глаза зоне спектра.

Дисковод DVD-ROM оснащён двумя слабыми лазерными диодами, энергии которых хватает только для чтения CD и DVD дисков. В пишущем приводе DVD-RW установлен красный лазер большой мощности. Его луч виден при любом освещении и может легко воспламенять некоторые предметы.

В BD-ROM стоит фиолетовый или синий лазер, который по параметрам схож с аналогом из DVD-ROMа. Из пишущих BD-RE можно достать наиболее мощный лазерный диод с красивым фиолетовым или синим лучом, способным к прожигу. Однако найти для разборки такой привод достаточно сложно, а рабочее устройство стоит дорого.

Самым подходящим является лазерный диод, взятый из пишущего привода DVD-RW дисков. Наиболее качественные лазерные диоды установлены в LG, Sony и Samsung приводах.

Чем выше скорость записи DVD привода, тем мощнее установлен в нем лазерный диод.

Разбор привода

Имея перед собой привод, первым делом снимают верхнюю крышку, открутив 4 винта. Затем извлекают подвижный механизм, который находится в центре и соединён с печатной платой гибким шлейфом. Следующая цель – лазерный диод, надёжно впрессованный в радиаторе из алюминиевого или дюралевого сплава. Перед его демонтажем рекомендуется обеспечить защиту от статического электричества. Для этого выводы лазерного диода спаивают или обматывают тонкой медной проволокой.

Далее возможны два варианта. Первый подразумевает эксплуатацию готового лазера в виде стационарной установки вместе со штатным радиатором. Второй вариант – это сборка устройства в корпусе переносного фонарика или лазерной указки. В этом случае придётся приложить силу, чтобы раскусить или распилить радиатор, не повредив излучающий элемент.

Драйвер

К питанию лазера необходимо отнестись ответственно. Как и для светодиодов, это должен быть источник стабилизированного тока. В интернете встречается множество схем с питанием от батарейки или аккумулятора через ограничительный резистор. Достаточность такого решения сомнительна, так как напряжение на аккумуляторе или батарейки меняется в зависимости от уровня заряда. Соответственно ток, протекающий через излучающий диод лазера, будет сильно отклоняться от номинального значения. В результате на малых токах устройство будет работать не эффективно, а на больших – приведёт к быстрому снижению интенсивности его излучения.

Оптимальным вариантом считается использование простейшего стабилизатора тока, построенного на базе . Данная микросхема относится к разряду универсальных интегральных стабилизаторов с возможностью самостоятельного задания тока и напряжения на выходе. Работает микросхема в широком диапазоне входных напряжений: от 3 до 40 вольт.

Аналогом LM317 является отечественная микросхема КР142ЕН12.

Для первого лабораторного эксперимента подойдет схема, приведенная ниже. Расчет единственного в схеме резистора производят по формуле: R=I/1,25, где I – номинальный ток лазера (справочное значение).

Иногда на выходе стабилизатора параллельно диоду устанавливают полярный конденсатор на 2200 мкФх16 В и неполярный конденсатор на 0,1 мкФ. Их участие оправдано в случае подачи напряжения на вход от стационарного блока питания, который может пропустить незначительную переменную составляющую и импульсную помеху. Одна из таких схем, рассчитанная на питание от батарейки «Крона» или небольшого аккумулятора, представлена ниже.

На схеме указано примерное значение резистора R1. Для его точного расчета необходимо воспользоваться вышеприведенной формулой.

Собрав электрическую схему, можно сделать предварительное включение и как доказательство работоспособности схемы, наблюдать ярко-красный рассеянный свет излучающего диода. Измерив его реальный ток и температуру корпуса, стоит задуматься о необходимости установки радиатора. Если лазер будет использоваться в стационарной установке на больших токах длительное время, то нужно обязательно предусмотреть пассивное охлаждение. Теперь для достижения цели осталось совсем немного: произвести фокусировку и получить узконаправленный луч большой мощности.

Оптика

Выражаясь по-научному, пришло время соорудить простой коллиматор, устройство для получения пучков параллельных световых лучей. Идеальным вариантом для этой цели будет штатная линза, взятая из привода. С её помощью можно получить довольно тонкий луч лазера диаметром около 1 мм. Количества энергии такого луча достаточно, чтобы насквозь прожигать бумагу, ткань и картон в считаные секунды, плавить пластик и выжигать по дереву. Если сфокусировать более тонкий луч, то данным лазером можно резать фанеру и оргстекло. Но настроить и надежно закрепить линзу от привода достаточно сложно из-за ее малого фокусного расстояния.

Намного проще соорудить коллиматор на основе лазерной указки. К тому же в её корпусе можно поместить драйвер и небольшой аккумулятор. На выходе получится луч в диаметре около 1,5 мм меньшего прожигающего действия. В туманную погоду или при обильном снегопаде можно наблюдать неимоверные световые эффекты, направив световой поток в небо.

Через интернет-магазин можно приобрести готовый коллиматор, специально предназначенный для крепления и настройки лазера. Его корпус послужит радиатором. Зная размеры всех составных частей устройства, можно купить дешевый светодиодный фонарик и воспользоваться его корпусом.

В заключение хочется добавить несколько фраз об опасности лазерного излучения. Во-первых, никогда не направляйте луч лазера в глаза людей и животных. Это приводит к серьёзным нарушениям зрения. Во-вторых, во время экспериментов с красным лазером надевайте зелёные очки. Они препятствуют прохождению большей части красной составляющей спектра. Количество света, прошедшее сквозь очки, зависит от длины волны излучения. Смотреть со стороны на луч лазера без защитных средств допускается лишь кратковременно. В противном случае может появиться боль в глазах.

Читайте так же